
Optimization & Optimal Research
Practical Session

Abstract

The aim of this practical session is to implement several algorithms that we have seen during the class,
study the convexity of various functions, �nd their global or local minima. We will also verify the in�uence of
the learning rate for the gradient descent with a �xed step and see a convergence condition of this algorithm.
You can use any programming language you want - I will try to help you but this should not be taken for
granted.

Introduction (20 minutes)

Consider the following functions:

f1(x, y) = x2 +
y2

20
,

f2(x, y) =
x2

2
+
y2

2
,

f3(x, y) = (1− x)2 + 10(y − x2)2,

f4(x, y) =
x2

2
+ x cos(y).

For f3, we will take (x0, y0) = (−1, 1) as the initialization of our algorithm.

1. Compute the gradient of each function.

2. Which of the functions are convex? Why? Justify your answer using the arguments seen during the previ-
ous lessons.

3. Plot these functions.

4. What is the global minimum of each function?

We now want to solve the following optimization problem

min
(x,y)∈R2

f(x, y),

for each function f using the algorithms studied before.

1 Gradient descent with a constant learning rate (40 minutes)

We recall that the gradient descent algorithm with constant learning rate η > 0 updates the weights at each
iteration as follows:

uk+1 ← uk − η∇f(uk).
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1. De�ne a function called GradientDescent implementing the gradient descent algorithm.

2. Test your function with di�erent values of η for all functions (f1, f2, f3, f4). What do you notice? Represent
the convergence of (x, y) in a graph resembling the following one:

3. Consider now function f2. Test your algorithm with this function by setting η to 1.9 and 2.1. Give a condi-
tion on η so that the algorithm converges.

We suppose that the function f is α−elliptical and the gradient function ∇f is L−lipschitzien. We can

show that this algorithm converges if we take η such that : 0 < η <
2α

L2
.

(a) Find the value of L such that :

‖∇f(x1, y1)−∇f(x2, y2)‖ ≤ L‖(x1, y1)− (x2, y2)‖

(b) Compute λmin, the smallest eigenvalue of f . Set α = λmin and conclude.
(c) Try to do the same for the function f1.

2 Gradient descent with optimal step (30 minutes)

For this exercise, the learning rate is not constant but determined by solving the problem :

η(k) = Argmin
eta>0

f(uk − η∇f(uk)).

1. Give an explicit expression of η for the f1 and f2.

2. Implement the algorithm with an adaptive learning rate.

3. Apply your modi�ed algorithm to function f1 and compare the result with the one obtained by the previous
implementation.

4. Do the same for the function f3.
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3 Newton’s Method (30 minutes)

The Newton’s Method is solving Euler’s equation

∇f(u) = 0.

An iteration of the Newton’s algorithm is given by:

uk+1 ← uk − (Hf (u))
−1∇f(u),

where Hj refers to the Hessian matrix of the function f .

Remark: It is possible to improve this method by combining it with a line search algorithm. To this end, we smay set:

uk+1 ← uk − η(Hf (u))
−1∇f(u),

where η is a constant or a variable that satis�es the Wolfe’s condition.

1. Compute the Hessian matrix for the functions f1, f3 and f4.

2. Implement the Newton’s method for the function f3 and f4 to �nd the global minimum.

3. For the function f2 and/or f3, compare the convergence of the three algorithms.

4. What are the advantage(s) and drawback(s) of this method?
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