Optimization & Optimal Research
Practical Session

Abstract

The aim of this practical session is to implement several algorithms that we have seen during the class,
study the convexity of various functions, find their global or local minima. We will also verify the influence of
the learning rate for the gradient descent with a fixed step and see a convergence condition of this algorithm.
You can use any programming language you want - I will try to help you but this should not be taken for
granted.

Introduction (20 minutes)

Consider the following functions:

2
fl(xvy) = xQ + %7
2 2
f2($7y) = ? + %a
fa(z,y) = (1 —2)? +10(y — 2%)?,
2
falz,y) = T + x cos(y).

For f3, we will take (zg,y0) = (—1, 1) as the initialization of our algorithm.

1. Compute the gradient of each function.

2. Which of the functions are convex? Why? Justify your answer using the arguments seen during the previ-

ous lessons.
3. Plot these functions.

4. What is the global minimum of each function?

We now want to solve the following optimization problem

G fz,y),

for each function f using the algorithms studied before.
1 Gradient descent with a constant learning rate (40 minutes)
We recall that the gradient descent algorithm with constant learning rate n > 0 updates the weights at each

iteration as follows:
Uk1 — up — NV f(ug).



1. Define a function called GradientDescent implementing the gradient descent algorithm.

2. Test your function with different values of 7) for all functions (f1, f2, f3, f4). What do you notice? Represent
the convergence of (z,y) in a graph resembling the following one:
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3. Consider now function f3. Test your algorithm with this function by setting 1) to 1.9 and 2.1. Give a condi-
tion on 7 so that the algorithm converges.

We suppose that the function f is a—elliptical and the gradient function V f is L—lipschitzien. We can

2
show that this algorithm converges if we take 7 such that: 0 < 7 < L—(;

(a) Find the value of L such that :
IV f(z1,91) = Vf(@2,92)|| < Ll[(z1,91) — (2, 92) |

(b) Compute A\pin, the smallest eigenvalue of f. Set & = Apin and conclude.

(c) Try to do the same for the function f;.

2 Gradient descent with optimal step (30 minutes)

For this exercise, the learning rate is not constant but determined by solving the problem :

n™ = Argmin f(ux =0V f(ur)).

eta>0

1. Give an explicit expression of 7 for the f; and fo.
2. Implement the algorithm with an adaptive learning rate.

3. Apply your modified algorithm to function f; and compare the result with the one obtained by the previous
implementation.

4. Do the same for the function f3.



3 Newton’s Method (30 minutes)

The Newton’s Method is solving Euler’s equation
Vf(u) =0.
An iteration of the Newton’s algorithm is given by:
U1 = up — (Hp(u)) ™'V f(u),

where H; refers to the Hessian matrix of the function f.

Remark: It is possible to improve this method by combining it with a line search algorithm. To this end, we smay set:

U1 = ug — (Hp(w) 7'V f(u),

where 1) is a constant or a variable that satisfies the Wolfe’s condition.

1. Compute the Hessian matrix for the functions f1, f3 and f;.
2. Implement the Newton’s method for the function f3 and f4 to find the global minimum.
3. For the function f2 and/or f3, compare the convergence of the three algorithms.

4. What are the advantage(s) and drawback(s) of this method?
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