Optimization \& Operational Research : First Part

Antoine Gourru

Slides built by Guillaume Metzler, updated by levgen Redko

January 2024 - Semester II

Topic of the course

Headline

- Mathematical background : Convex sets and derivatives.
- Convex function and their properties.
- What is a convex optimization problem ?
- Algorithms for convex optimization.

Some references

Linear Algebra

- K.B Petersen, M.S Pedersen, The Matrix Cookbook,2012. Available at : http ://matrixcookbook.com

Convex Optimization

- Stephen Boyd \& Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2014

Mathematical Background

Norms

Given $x, y \in \mathbb{R}^{n}$, the inner product is given by :

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} .
$$

The inner product of x with itself is called the square of the norm of x

$$
\langle x, x\rangle=\|x\|^{2} .
$$

Definition

Let E be a \mathbb{R}-vector space, then the application $\|$.$\| is said to be a norm$ if for all $u, v \in E$ and $\lambda \in \mathbb{R}$

1. (positive) $\|u\| \geq 0$,

\square

Norms

Given $x, y \in \mathbb{R}^{n}$, the inner product is given by :

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} .
$$

The inner product of x with itself is called the square of the norm of x

$$
\langle x, x\rangle=\|x\|^{2} .
$$

Definition

Let E be a \mathbb{R}-vector space, then the application $\|$.$\| is said to be a norm$ if for all $u, v \in E$ and $\lambda \in \mathbb{R}$

1. (positive) $\|u\| \geq 0$,
2. (definite) $\|u\|=0 \Longleftrightarrow u=0$,

Norms

Given $x, y \in \mathbb{R}^{n}$, the inner product is given by :

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} .
$$

The inner product of x with itself is called the square of the norm of x

$$
\langle x, x\rangle=\|x\|^{2} .
$$

Definition

Let E be a \mathbb{R}-vector space, then the application $\|$.$\| is said to be a norm$ if for all $u, v \in E$ and $\lambda \in \mathbb{R}$

1. (positive) $\|u\| \geq 0$,
2. (definite) $\|u\|=0 \Longleftrightarrow u=0$,
3. (scalability) $\|\lambda u\|=|\lambda|\|u\|$,

Norms

Given $x, y \in \mathbb{R}^{n}$, the inner product is given by :

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

The inner product of x with itself is called the square of the norm of x

$$
\langle x, x\rangle=\|x\|^{2} .
$$

Definition

Let E be a \mathbb{R}-vector space, then the application $\|$.$\| is said to be a norm$ if for all $u, v \in E$ and $\lambda \in \mathbb{R}$

1. (positive) $\|u\| \geq 0$,
2. (definite) $\|u\|=0 \Longleftrightarrow u=0$,
3. (scalability) $\|\lambda u\|=|\lambda|\|u\|$,
4. (triangle inequality) $\|u+v\| \leq\|u\|+\|v\|$.

Norms

The norm can be seen as distance between two vectors x, y in the same vector space

$$
\operatorname{dist}(x, y)=\|x-y\| .
$$

Example of usual norms :

- $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (Manhattan)

$\|x\|_{\infty}=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$
- More generally we define the norm \|\|.\|p for all integers p as

Norms

The norm can be seen as distance between two vectors x, y in the same vector space

$$
\operatorname{dist}(x, y)=\|x-y\| .
$$

Example of usual norms :

- $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (Manhattan)
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ (Euclidean)
- More generally we define the norm $\|\cdot\|_{p}$ for all integers p as

Norms

The norm can be seen as distance between two vectors x, y in the same vector space

$$
\operatorname{dist}(x, y)=\|x-y\| .
$$

Example of usual norms :

- $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (Manhattan)
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ (Euclidean)
- $\|x\|_{\infty}=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$
- More generally we define the norm $\|\cdot\|_{p}$ for all integers p as

Norms

The norm can be seen as distance between two vectors x, y in the same vector space

$$
\operatorname{dist}(x, y)=\|x-y\| .
$$

Example of usual norms :

- $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (Manhattan)
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ (Euclidean)
- $\|x\|_{\infty}=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$
- More generally we define the norm $\|.\|_{p}$ for all integers p as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Example 1/2

We will show that the Euclidean norm is a true norm. Let $x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ then

1. It is obvious that $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ is positive.
2. As $\left|x_{i}\right|^{2} \geq 0$ then $\sum_{i=1}^{n}\left|x_{i}\right|^{2}=0$ if and only if $\forall i, x_{i}=0$
3. Finally,

$$
\begin{aligned}
\|\lambda x\|_{2} & =\sqrt{\sum_{i=1}^{n}\left|\lambda x_{i}\right|^{2}} \\
& =\sqrt{\sum_{i=1}^{n}|\lambda|^{2}\left|x_{i}\right|^{2}} \\
& =|\lambda| \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} .
\end{aligned}
$$

Example 2/2

To prove the last point we will use the Cauchy-Schwartz Inequality :

$$
\langle x, y\rangle \leq\|x\|\|y\| .
$$

We have,

$$
\begin{aligned}
\|x+y\|_{2}^{2} & =\|x\|_{2}^{2}+2\langle x, y\rangle+\|y\|_{2}^{2} \\
& \leq\|x\|_{2}^{2}+2\|x\|_{2}\|y\|_{2}+\|y\|_{2}^{2} \\
& \leq\left(\|x\|_{2}+\|y\|_{2}\right)^{2} .
\end{aligned}
$$

By taking the square root, which is an increasing function, we get the result.

Norms and Unit Ball

Unit ball for the norms $\left\|\|_{p}\right.$ for $p=1,2$ and $p>2$

Exercise

1. Represent the unit ball for the norm $\|\cdot\|_{\infty}$.
2. Show that $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ is a norm.

Correction

- The Unit Ball using the $\|\cdot\|_{\infty}$ is a full square.
- We have to check the four points of the definition.

1. $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \geq 0$ by definition of the absolute value.
2. $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \geq 0 \Longrightarrow x=0$ because the sum of positive numbers is equal to zero if and only if all the terms are equal to zero.
3. $\|\lambda x\|_{1}=\sum_{i=1}^{n}\left|\lambda x_{i}\right|=|\lambda| \sum_{i=1}^{n}\left|x_{i}\right|=|\lambda|\|x\|_{1}$.
4. $\|x+y\|_{1}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|+\sum_{i=1}^{n}\left|y_{i}\right|=\|x\|_{1}+\|y\|_{1}$.

Norms on matrices

It is also to define an inner product and a norms on matrices :

1. Given two matrices $X, Y \in \mathbb{R}^{m \times n}$ the inner product is defined by :

$$
\langle X, Y\rangle=\operatorname{Tr}\left(X^{T} Y\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} y_{i j} .
$$

2. A classical norm used with matrices is the Frobenius norm :

$$
\|X\|_{F}=\sqrt{\operatorname{Tr}\left(X^{T} X\right)}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{2}\right)^{1 / 2} .
$$

What is the inner product of the symmetric matrices $X, Y \in \mathcal{S}^{n}(\mathbb{R})$?

Convex Sets

Definition

A set C is said to be convex if, for every $(u, v) \in C$ and for all $t \in[0,1]$ we have :

$$
t u+(1-t) v \in C
$$

In other words, C is said to be convex if every point on the segment connecting u and v is in the set.

Convex Sets

Definition

A set C is said to be convex if, for every $(u, v) \in C$ and for all $t \in[0,1]$ we have :

$$
t u+(1-t) v \in C
$$

In other words, C is said to be convex if every point on the segment connecting u and v is in the set.

Proposition

Let ($u_{1}, u_{2}, \ldots, u_{n}$) be a set of n points belonging to a convex set C. Then for every reel numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that $\sum_{i=1}^{n} \lambda_{i}=1$:

$$
v=\sum_{i=1}^{n} \lambda_{i} u_{i} \in C .
$$

Convex Sets

Definition

A set C is said to be convex if, for every $(u, v) \in C$ and for all $t \in[0,1]$ we have :

$$
t u+(1-t) v \in C
$$

In other words, C is said to be convex if every point on the segment connecting u and v is in the set.

Proposition

Let ($u_{1}, u_{2}, \ldots, u_{n}$) be a set of n points belonging to a convex set C. Then for every reel numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that $\sum_{i=1}^{n} \lambda_{i}=1$:

$$
v=\sum_{i=1}^{n} \lambda_{i} u_{i} \in C .
$$

Every convex combination of points in a convex set is in the convex set.

Convex Sets

Which of the sets are convex?

Examples of Convex Sets

1. $\mathcal{B}=\left\{u \in \mathbb{R}^{n} \mid\|u\| \leq 1\right\}$ is convex.
2. Every segment in \mathbb{R} is convex.
3. Every hyperplane $\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}$ is convex.
4. If C_{1} and C_{2} are two convex sets, then the intersection $C=C_{1} \cap C_{2}$ is also convex.

Examples of Convex Sets

1. $\mathcal{B}=\left\{u \in \mathbb{R}^{n} \mid\|u\| \leq 1\right\}$ is convex.
2. Every segment in \mathbb{R} is convex.
3. Every hyperplane $\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}$ is convex.
4. If C_{1} and C_{2} are two convex sets, then the intersection $C=C_{1} \cap C_{2}$ is also convex.

Exercise

1. Prove that the Euclidean Unit Ball is convex.
2. (At home) Prove that a set A is convex if and only if its intersection with any line is convex.

Correction

- For the first point, consider $\lambda \in[0,1]$ and u, v two vectors in the unit ball. Then set $z=\lambda u+(1-\lambda) v$. (i) take the norm of z, (ii) apply the triangle inequality and (iii) the scalability of the norm.
- Use the definition of convexity

Build a convex set

For a convex set and a set of point $x_{1}, \ldots x_{n}$, it is possible to build a convex set. This new set is called the convex hull \mathcal{H} of a set of points

$$
\mathcal{H}=\left\{y=\sum_{i=1}^{n} \lambda_{i} x_{i} \mid \sum_{i=1}^{n} \lambda_{i}=1\right\} .
$$

Derivative for real functions

Recall

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $x_{0} \in \mathbb{R}$. We say that f is differentiable at x_{0} if the limit :

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists and is finite.
If f is continuously differentiable at x_{0}, so for $h \simeq 0$ we have

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\varepsilon(h) .
$$

This formula (Taylor's Formula) can be generalized to a function g n-times continuously differentiable :

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+\sum_{i=1}^{n} \frac{h^{(i)}}{i!} f^{(i)}\left(x_{0}\right)+\varepsilon\left(h^{n}\right)
$$

First order derivative

Definition

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a C^{0} application and $x \in \mathbb{R}^{m}$. Then f is differentiable at x_{0} if it exists $J \in \mathbb{R}^{m \times n}$ such that :

$$
\lim _{x \rightarrow x_{0}} \frac{\left\|f(x)-f\left(x_{0}\right)-J f\left(x_{0}\right)\left(x-x_{0}\right)\right\|}{\left\|x-x_{0}\right\|}=0 .
$$

D is called the Jacobian of the application f.

For all i, j the elements of the matrix J are given by :

$$
J_{i j} f\left(x_{0}\right)=\left.\frac{\partial f_{i}(x)}{\partial x_{j}}\right|_{x=x_{0}}
$$

First order derivative

Remark

Usually $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ so the Jacobian of the application f (also called the gradient) will be a vector $\nabla f\left(x_{0}\right)$

The gradient gives the possibility to approximate the function near the point its gradient is calculated. For all $x \in V\left(x_{0}\right)$ we have

$$
f(x) \simeq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)\left(x-x_{0}\right)
$$

This affine approximation of the function f will help us to characterize convex functions.

First order derivative : example

Let us consider a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
f(x, y, z)=3 x^{2}+2 x y z+6 z+5 y z+9 x z .
$$

We want to calculate the Jacobian of this function. To do so, we need to calculate : $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$. The Jacobian of f at (x, y, z) is given by :

$$
J_{f(x, y, z)}=\left(\begin{array}{ll}
6 x+2 y z+9 z, & 2 x z+5 z
\end{array} \quad 2 x y+6+5 y+9 x\right)
$$

First order derivative

Exercise

1. Let $x, y, z \in \mathbb{R}^{n}$. Calculate the Jacobian of the function

$$
f(x, y, z)=\exp (x y z)+x^{2}+y+\log (z)
$$

2. Linear Regression. Let $Y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times d}$ and $\beta \in \mathbb{R}^{d}$. Calculate the derivative of the function

$$
f(\beta)=\|Y-X \beta\|_{2}^{2}
$$

3. Log-Sum-Exp. Let $x, b \in \mathbb{R}^{n}$. Calculate the derivative of the function

$$
f(x)=\log \sum_{i=1}^{n} \exp \left(x_{i}+b_{i}\right)
$$

Correction

- You simply have to apply the definition as it we have done in the previous example and you will have :

$$
\nabla f(x, y, z)=\left(y z \exp (x y z)+2 x, x z \exp (x y z)+1, x y \exp (x y z)+\frac{1}{z}\right)
$$

- Here, you have to use the face that: $\|x\|^{2}=\langle x, x\rangle$. Then you compute the derivative using the fact that f is defined as a product of two functions of β.

$$
\nabla f(\beta)=-X^{T}(Y-X \beta)+\left((Y-X \beta)^{T}(-X)\right)^{T}=-2 X^{T}(Y-X \beta)
$$

- Remember that the Jacobian $\nabla_{f}=J_{f}$ is a vector where each entry i is equal to :

$$
\nabla f(x)_{i}=\frac{\exp \left(x_{i}+b_{i}\right)}{\sum_{i=1}^{n} \exp \left(x_{i}+b_{i}\right)} .
$$

Second order derivative

Definition

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a real function. Provided that this function is twice diffentiable, the second derivative H, (also called the Hessian)of f at x_{0} is given by :

$$
H_{i j} f\left(x_{0}\right)=\left.\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right|_{x=x_{0}},
$$

and $H \in \mathbb{R}^{m \times m}$

Hessian is useful to prove that a function f is convex or not and also to build efficient algorithms.

Second order derivative : example

Let us consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=4 x^{2}+6 y^{2}+3 x y+2(\cos (x)+\sin (y))
$$

and calculate the Hessian of this function. We first have to calculate the Jacobian of the matrix and then the Hessian.

$$
\left.\begin{array}{c}
J_{f(x, y)}=\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right)=(8 x+3 y-2 \sin (x) \\
12 y+3 x+2 \cos (y))
\end{array}\right)
$$

Second order derivative : example

Exercise

Calculate the second order derivative of the following functions:

- $f(x, y)=\log (x+y)+x^{2}+2 y+4$
- $f(x, y, z)=\frac{6 x}{1+y}+\exp (x y)+z$

Correction

The process is similar as in the previous example, so I only give the results.

$$
\begin{gathered}
H_{f(x, y)}=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial^{2} x} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial^{2} y}
\end{array}\right)=\left(\begin{array}{cc}
2-\frac{1}{(x+y)^{2}} & -\frac{1}{(x+y)^{2}} \\
-\frac{1}{(x+y)^{2}} & -\frac{1}{(x+y)^{2}}
\end{array}\right) \\
H_{f(x, y)}=\left(\begin{array}{cc}
y^{2} \exp (x y) & -\frac{6}{(1+y)^{2}}+(x y+1) \exp (x y) \\
-\frac{6}{(1+y)^{2}}+(x y+1) \exp (x y) & \frac{12 x}{(1+y)^{3}}+x^{2} \exp (x y) \\
0 & 0
\end{array}\right.
\end{gathered}
$$

