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Topic of the course

Headline
» Mathematical background : Convex sets and derivatives.
» Convex function and their properties.
» What is a convex optimization problem ?

» Algorithms for convex optimization.
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Some references

» K.B Petersen, M.S Pedersen, The Matrix Cookbook,2012.
Available at : http ://matrixcookbook.com

» Stephen Boyd & Lieven Vandenberghe, Convex Optimization,
Cambridge University Press, 2014
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Mathematical Background
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Norms

Given z,y € R™, the inner product is given by :
n
(wy) =aTy =7 ziy.
i=1

The inner product of x with itself is called the square of the norm of x

(@, z) = ||l

Definition
Let F be a R-vector space, then the application ||.|| is said to be a norm
if for all u,v € F and A € R

1. (positive) |lul| >0,
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Norms

Given z,y € R™, the inner product is given by :
n
(wy)=aTy=> ziy:
i=1
The inner product of x with itself is called the square of the norm of x

(@, z) = ||l

Definition

Let F be a R-vector space, then the application ||.|| is said to be a norm
if for all u,v € F and A € R

1. (positive) |lul| >0,

2. (definite) |lu|| =0 <= u =0,

3. (scalability) || Au|| = |Al||lul],

4. (triangle inequality) |lu + v|| < |Ju| + ||v]|.
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Norms

The norm can be seen as distance between two vectors x,y in the same
vector space

dist(z,y) = ||z — ]|
Example of usual norms :
» [[z]s = Y1 |#;| (Manhattan)
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Norms

The norm can be seen as distance between two vectors x,y in the same
vector space

dist(z,y) = ||z — ]|
Example of usual norms :
» [[z]s = Y1 |#;| (Manhattan)

> [[z]l2 = \/m (Euclidean)

» ||z]|co = max (Jz1],- -, |Tn])
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Norms

The norm can be seen as distance between two vectors x,y in the same
vector space

dist(z,y) = ||z — ]|
Example of usual norms :
» [[z]s = Y1 |#;| (Manhattan)

> [[z]l2 = \/m (Euclidean)
> el = max (sl .- )

» More generally we define the norm ||.||,, for all integers p as

n l/p
zllp, = <Z|%‘|p> :

i=1
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Example 1/2

We will show that the Euclidean norm is a true norm. Let z,y € R™ and
A € R then

1. It is obvious that ||z||2 = /> ., |@i]? is positive.

2. As |z;]* > 0 then 37" |2;|* = 0 if and only if Vi, z; =0

3. Finally,
n
Palls = | D Al
i=1
n
= | D APl
\i:l
= Al
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Example 2/2

To prove the last point we will use the Cauchy-Schwartz Inequality :

(@, y) < l=lllyl-

We have,

le+yll3 = Nl +2(z,y) + llyl3
< lall + 2l2llallyll2 + llyl3
2
< (lzllz +llyll2)™

By taking the square root, which is an increasing function, we get the
result.
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Norms and Unit Ball

Unit ball for the norms ||||, for p=1,2 and p > 2

} }

1. Represent the unit ball for the norm ||.||co-

2. Show that |lz|l1 = >_1; || is a norm.
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Correction

= The Unit Ball using the ||.||« is a full square.
= We have to check the four points of the definition.

L |lzlli = X2 |i| > 0 by definition of the absolute value.

2. ||zl = X7, |zl >0 = x = 0 because the sum of positive
numbers is equal to zero if and only if all the terms are equal to zero.

3. Azl = 200 sl = [N 255 fa| = [A]]|])s-
4 Nl +yll =220y |+ sl < 325 il + 2050 [wil = Nl + [yl
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Norms on matrices

It is also to define an inner product and a norms on matrices :

1. Given two matrices X,Y € R™*™ the inner product is defined by :

(X,Y)=Tr (X"Y) Zwayw

1=1 j=1

2. A classical norm used with matrices is the Frobenius norm :

|X||F = /Tr (XTX) szj

i=1 j=1

1/2

What is the inner product of the symmetric matrices X,Y € S"(R)?
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Convex Sets

Definition
A set C is said to be convex if, for every (u,v) € C and for all ¢t € [0, 1]
we have :

tu+ (1 -ty e C.

In other words, C is said to be convex if every point on the segment
connecting u and v is in the set.
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Convex Sets

Definition
A set C is said to be convex if, for every (u,v) € C and for all ¢t € [0, 1]

we have :
tu+ (1 —t)v e C.

In other words, C is said to be convex if every point on the segment
connecting u and v is in the set.

Proposition

Let (u1,us,...,u,) be a set of n points belonging to a convex set C.
Then for every reel numbers A1, Ao, ..., A, such that Z?:l Ni=1:

Y = zn:)\lul e C.
1=1
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Convex Sets

Definition
A set C is said to be convex if, for every (u,v) € C and for all ¢t € [0, 1]

we have :
tu+ (1 —t)v e C.

In other words, C is said to be convex if every point on the segment
connecting u and v is in the set.

Proposition

Let (u1,us,...,u,) be a set of n points belonging to a convex set C.
Then for every reel numbers A1, Ao, ..., A, such that Z?Zl Ni=1:

Y = zn:)\lul e C.
1=1

Every convex combination of points in a convex set is in the convex set.

V.
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Convex Sets

Which of the sets are convex?

T Y Py
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Examples of Convex Sets

B={ueR"||ul| <1} is convex.
Every segment in R is convex.

Every hyperplane {z € R" | aTx = b} is convex.

=

If C; and (3 are two convex sets, then the intersection C = C1 N Cy
is also convex.
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Examples of Convex Sets

B={ueR"||ul| <1} is convex.
Every segment in R is convex.

Every hyperplane {z € R" | aTx = b} is convex.

=

If C; and (3 are two convex sets, then the intersection C = C1 N Cy
is also convex.

1. Prove that the Euclidean Unit Ball is convex.

2. (At home) Prove that a set A is convex if and only if its intersection
with any line is convex.
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Correction

= For the first point, consider A € [0,1] and u, v two vectors in the unit
ball. Then set z = Au+ (1 — A)v. (i) take the norm of z, (ii) apply the
triangle inequality and (jii) the scalability of the norm.

= Use the definition of convexity
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Build a convex set

For a convex set and a set of point x1,...z,, it is possible to build a
convex set. This new set is called the convex hull H of a set of points

i=1 i=1
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Derivative for real functions

Let f: R — R be continuous and zy € R. We say that f is differentiable

at g if the limit :
lim f(zo+h) — f(fvo)’
h—0 h

exists and is finite.

If f is continuously differentiable at zg, so for h ~ 0 we have
f(zo +h) = f(zo) + hf'(w0) +e(h).

This formula (Taylor's Formula) can be generalized to a function g
n-times continuously differentiable :

LI O R
Fleo + 1) = o) + 30 T FO ) + (™)

=1
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First order derivative

Definition

Let f: R™ — R™ be a C° application and z € R™. Then f is
differentiable at xq if it exists J € R™*" such that :

lim |l f(z) = f(xo) — J f(m0)(x — xo)|

=z [l = ol

=0.

D is called the Jacobian of the application f.

For all i, the elements of the matrix J are given by :

dfi(x)
a.%'j

Jij f(x0) =

=T

Antoine Gourru OOR Course Master MLDM 18 /26



Mathematical Background and Recall
O0@0000000

First order derivative

Usually f : R™ — R so the Jacobian of the application f (also called the
gradient) will be a vector V f(z()

The gradient gives the possibility to approximate the function near the
point its gradient is calculated. For all z € V(zg) we have

f(x) = f(xo) + Vf(zo)(x — z0)

This affine approximation of the function f will help us to
characterize convex functions.
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First order derivative : example

Let us consider a function f : R® — R defined by

f(x,y,2) = 32 + 22yz + 62 + Syz + 9z,

We want to calculate the Jacobian of this function. To do so, we need to

calculate : % % % The Jacobian of f at (z,y, z) is given by :

Jt(wy,z2) = ( 6x 4+ 2yz+ 9z, 2xz+5z 2zy+ 645y + 9 )
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First order derivative

1. Let z,y,z € R™. Calculate the Jacobian of the function

fl@,y,2) = exp(zyz) + 2 +y + log(2).

2. Linear Regression. Let Y € R, X € R"*? and 8 € R%.
Calculate the derivative of the function

FB) =1y — XBI3

3. Log-Sum-Exp. Let z,b € R™. Calculate the derivative of the function

f(z) = log Z exp (z; + b;)

i=1
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Correction

= You simply have to apply the definition as it we have done in the
previous example and you will have :

1
Vi(z,y,z) = (yz exp(zyz) + 2z, zz exp(zyz) + 1, zy exp(zyz) + > .
z

= Here, you have to use the face that : ||z]|> = (x,2). Then you
compute the derivative using the fact that f is defined as a product of
two functions of 3.

VIB) = -XT(Y —XB)+ (Y = XB)T(—Xx))T = —2XT(Y — XB).

= Remember that the Jacobian V¢ = J; is a vector where each entry i

is equal to :
exp(z; + b;)

S exp(a; 4 b))

V() =
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Second order derivative

Definition
Let f: R™ — R be a real function. Provided that this function is twice
diffentiable, the second derivative H, (also called the Hessian)of f at xg

is given by : #5(2)
x

8xi8xj =0

)

H;jf(xo) =

and H € Rm>x™

Hessian is useful to prove that a function f is convex or not and also
to build efficient algorithms.
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Second order derivative : example

Let us consider the function f : R? — R defined by
f(x,y) = 42® + 6y> + 3y + 2 (cos(z) + sin(y))

and calculate the Hessian of this function. We first have to calculate the
Jacobian of the matrix and then the Hessian.

(@) = < or of > = ( 8z + 3y — 2sin(x) 12y + 3z + 2cos(y) )

dr Oy
of  of
I B 2z dzdy | _ [ 8—2cos(x) 3
fen) = 92f 0% |~ 3 12 — 2sin(y)
oyox 0%y
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Second order derivative : example

Calculate the second order derivative of the following functions :

» f(z,y) = log(z +y) +2° + 2y +4
6x

" f(x,y,z)z 1+y

+exp(zy) + 2
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Correction

The process is similar as in the previous example, so | only give the

results.

TR AN B

9%z Owd +y)° +y)?

Hf(ny) = 62? ngy - (xl & “ 1y)
oyox 9%y (z +y)? (z +y)?
) 6
y” exp(zy) NETE ygz + (zy + 1) exp(zy)
_ 6 12z
Hf(x,y) 7@ -+ (iCy + ].) exp(xy) m + 2 exp(fy)
0 0

Antoine Gourru OOR Course Master MLDM 26 /26



	Mathematical Background and Recall

