Optimization \& Operational Research : Second Part

Antoine Gourru

Slides built by Guillaume Metzler, updated by levgen Redko

January 2024 - Semester II

Convexity

What is a convex optimization problem?

Given a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we would solve the problem :

$$
\hat{x}=\underset{x \in \mathbb{R}^{n}}{\arg \min } \quad f(x)
$$

The aim of this part is to introduce algorithms building a series $\left(x_{n}\right)_{n \in \mathbb{N}}$ which converges to \hat{x}.

Optimization

There exists several type of optimization problems :

- convex optimization as presented before
- constrained optimization problem,
- non convex optimization problem,
- non differentiable convex optimization problem
we only focus on convex optimization problem!

Why do we study them

1. Cornerstone in modern Machine Learning.
2. Convex function can be optimized easier (Gradient Descent vs Newton's Method.)

Convex Functions

Which of the following functions are convex graphically?

Convex Functions

Definition

Let \mathcal{U} be an on empty set of a vector space $\left(\mathcal{U}=\mathbb{R}^{n}\right)$. A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is said to be convex if, for every $(u, v) \in \mathcal{U}$ and for all $t \in[0,1]$, we have :

$$
f(t u+(1-t) v) \leq t f(u)+(1-t) f(v) .
$$

- A linear function is convex,
- $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}$,
- $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\exp (x)$.

A convex function and its chord

Convex Functions and line segment

Proposition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only the function

$$
g(t)=f(x+t v) \text { is convex }
$$

for all x, v such that $x+t v$ belongs to the domain of definition of f (f is concave if and only if g is concave).

Convex Functions

Exercise

Show that the function $F: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}$ is convex.
Solution : we need to show $(t x+(1-t) y)^{2} \leq t x^{2}+(1-t) y^{2}$.

$$
\begin{gathered}
\Longleftrightarrow t^{2} x^{2}+2 t(1-t) x y+(1-t)^{2} y^{2} \leq t x^{2}+(1-t) y^{2} \\
\Longleftrightarrow\left(t^{2}-t\right) x^{2}+2 t(1-t) x y+\left((1-t)^{2}-(1-t)\right) y^{2} \leq 0 \\
\Longleftrightarrow t(t-1) x^{2}-2 t(t-1) x y+t(t-1) y^{2} \leq 0 \\
\Longleftrightarrow t(t-1)(x-y)^{2} \leq 0
\end{gathered}
$$

Convex functions

Equivalent definition

A function f is convex on \mathcal{U} if and only if its epigraph E is convex, where $E=\{(x, y) \in \mathcal{U} \mid f(x) \leq y\}$.

Epigraph is the blue domain, which is convex

Concavity

Remark

Let \mathcal{U} be an on empty set of a vector space $\left(\mathcal{U}=\mathbb{R}^{n}\right)$. A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is said to be concave if, for every $(u, v) \in \mathcal{U}$ and for all $t \in[0,1]$, we have :

$$
f(t u+(1-t) v) \geq t f(u)+(1-t) f(v)
$$

If f is concave, then $-f$ is a convex function.
The function f defined by $f(x)=\ln (x)$ is concave.

Convex Functions

1. Given two convex functions f and g defined on \mathcal{U}, the sum $f+g$ is also a convex function.
2. If f is an increasing and convex function, g a convex function, then $f \circ g(x)$ is convex.
3. If f and g are convex functions, then h defined by $h(u)=\max (f(u), g(u))$ is also convex

Exercise

Prove the two first points using the definition of convexity.

Correction

1. For this one, you have to notice that $(f+g)(x)=f(x)+g(x)$ and apply the definition of convexity
2.

$$
\begin{aligned}
g(t x+(1-t) y)) & \leq t g(x)+(1-t) g(y) \\
f(g(t x+(1-t) y))) & \leq f(t g(x)+(1-t) g(y)) \\
f(g(t x+(1-t) y))) & \leq t f(g(x))+(1-t) f(g(y)) \\
f \circ g(t x+(1-t) y) & \leq t f \circ g(x)+(1-t) f \circ g(y)
\end{aligned}
$$

Convex Loss Functions

Convexity and differentiability

Proposition

Let f be a continuously differentiable function $\left(C^{1}\right)$ on \mathcal{U}. Then f is convex if and only if, for all $(u, v) \in \mathcal{U}$, we have :

$$
f(v) \geq f(u)+\nabla f(u)(v-u) .
$$

Equivalently if and only if, for all $(u, v) \in \mathcal{U}$, we have :

$$
(\nabla f(v)-\nabla f(u))(v-u) \geq 0
$$

Convexity and differentiability

Definition

Let f be a function of class C^{2} on \mathcal{U} and let H be its Hessian. Then f is convex if :

- $\nabla^{2} f(u) \geq 0$ for all $u \in \mathcal{U}$.
- H is a positive semi definite (PSD), i.e, $\forall u \in \mathcal{U}$

$$
u^{T} H u \geq 0 .
$$

Recall

A matrix H is PSD if and only if all of it's eigenvalues are non-negative

Convexity and differentiability

Interpretation

Positive eigenvalues imply that the gradient is an increasing function along each direction of the space

We consider a 2×2 matrix A :

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are real numbers. We denote by λ_{1}, λ_{2} the eigenvalues of this matrix (roots of the polynomial $\operatorname{det}\left(X I_{2}-A\right)$).

Convexity and differentiability

1. We'll show why, for a 2×2 matrix, we have the following equivalence :

$$
\mathrm{A} \text { is } \mathrm{PSD} \Longleftrightarrow \operatorname{Tr}(A) \geq 0 \text { and } \operatorname{det}(A) \geq 0 .
$$

2. We have $\left.\operatorname{det}\left(X I_{2}-A\right)\right)=x^{2}-(a+d) x+a d-b c$. The roots of this polynomial are exactly the eigenvalues of the matrix A (by definition), so

So we have, for all $x \in \mathbb{R}$

Convexity and differentiability

1. We'll show why, for a 2×2 matrix, we have the following equivalence :

$$
\mathrm{A} \text { is } \mathrm{PSD} \Longleftrightarrow \operatorname{Tr}(A) \geq 0 \text { and } \operatorname{det}(A) \geq 0 .
$$

2. We have $\left.\operatorname{det}\left(X I_{2}-A\right)\right)=x^{2}-(a+d) x+a d-b c$. The roots of this polynomial are exactly the eigenvalues of the matrix A (by definition), so

$$
\operatorname{det}\left(X I_{2}-A\right)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)=x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2} .
$$

So we have, for all $x \in \mathbb{R}$:

$$
x^{2}-(a+d) x+a d-b c=x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2}
$$

Convexity and differentiability

1. We'll show why, for a 2×2 matrix, we have the following equivalence :

$$
\mathrm{A} \text { is } \mathrm{PSD} \Longleftrightarrow \operatorname{Tr}(A) \geq 0 \text { and } \operatorname{det}(A) \geq 0
$$

2. We have $\left.\operatorname{det}\left(X I_{2}-A\right)\right)=x^{2}-(a+d) x+a d-b c$. The roots of this polynomial are exactly the eigenvalues of the matrix A (by definition), so

$$
\operatorname{det}\left(X I_{2}-A\right)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)=x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2}
$$

So we have, for all $x \in \mathbb{R}$:

$$
x^{2}-(a+d) x+a d-b c=x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2}
$$

3. It implies : $\lambda_{1}+\lambda_{2}=a+d=\operatorname{Tr}(A)$ and $\lambda_{1} \lambda_{2}=a d-b c=\operatorname{det}(A)$.

Convexity and differentiability

1. (\Rightarrow) If the eigenvalues are positive, we immediately see that both :

$$
\operatorname{Tr}(A)>0 \quad \text { and } \quad \operatorname{det}(A) \geq 0 .
$$

2. (\Leftarrow) Conversely, if $\operatorname{det}(A) \geq 0$ it means that the two eigenvalues have the same sign. Moreover, if the trace is positive then the two eigenvalues are positive.

Convexity and differentiability

Remark

A matrix A is said to be NSD (Negative Semi-Definite) if its eigenvalues are non-positive. A 2×2 matrix A is NSD if we have :

$$
\operatorname{Tr}(A)<0 \quad \text { and } \quad \operatorname{det}(A) \geq 0 .
$$

Examples

- If for all $i=1, \ldots, n, \quad \lambda_{i} \geq 0$, then $H=\operatorname{diag}\left(\lambda_{i}\right)$ is PSD.
- The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}$ is convex.

Examples

- If for all $i=1, \ldots, n, \quad \lambda_{i} \geq 0$, then $H=\operatorname{diag}\left(\lambda_{i}\right)$ is PSD.
- The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}$ is convex.

Exercises

- Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=2 x^{2}+2 x y+2 y^{2}$ is convex.
- Show that the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x, y, z)=5 x^{2}+2 \sqrt{2} x y+6 y^{2}+3 z^{2}$ is convex.
- Show that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x)=\log \left(\sum_{i=1}^{N} e^{x_{i}}\right)$ is convex.

Convex Problems

Correction 1/6

For the two first functions, you have to check that all the eigenvalues of the Hessian Matrix are non-negative. So you need : 1) to compute the Hessian Matrix of the given function and 2) to compute the eigenvalues of this last. Remember that the eigenvalues of a given matrix H are given by finding the roots of the following polynomial in λ :

$$
\operatorname{det}\left(H-\lambda I_{d}\right)
$$

Convex Problems

Correction 2/6

- For the first function, the Hessian Matrix is given by :

$$
H_{f}(x, y)=\left(\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right)
$$

The eigenvalues are then given by finding the roots of the polynom :
$\operatorname{det}\left(H_{f}(x, y)-\lambda I_{2}\right)=\operatorname{det}\left(\begin{array}{cc}4-\lambda & 2 \\ 2 & 4-\lambda\end{array}\right)=(4-\lambda)^{2}-2^{2}=(\lambda-2)(\lambda-6)$.
The eigenvalues are 2 and 6 , they are non-negative so the function f is convex.

Correction 3/6

- For the second function, the Hessian Matrix is given by :

$$
H_{f}(x, y)=\left(\begin{array}{ccc}
10 & 2 \sqrt{2} & 0 \\
2 \sqrt{2} & 12 & 0 \\
0 & 0 & 6
\end{array}\right)
$$

The eigenvalues are then given by finding the roots of the polynom :

$$
\operatorname{det}\left(H_{f}(x, y)-\lambda I_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
10-\lambda & 2 \sqrt{2} & 0 \\
2 \sqrt{2} & 12-\lambda & 0 \\
0 & 0 & 6-\lambda
\end{array}\right) .
$$

$\operatorname{det}\left(H_{f}(x, y)-\lambda I_{3}\right)=(6-\lambda)[(10-\lambda)(12-\lambda)-8]=(6-\lambda)(\lambda-8)(\lambda-14)$.
The eigenvalues are 6,8 and 14 , they are non-negative so the function f is convex.

Correction 4/6

- For this last function, we will use the expression of the Jacobian previously computed:

$$
J_{f}(x)=\frac{1}{\sum_{i=1}^{n} \exp \left(x_{i}\right)}\left(\exp \left(x_{1}, \ldots, \exp \left(x_{n}\right)\right)\right.
$$

Then we compute the Hessian, we will seperate the diagonal terms with the non-diagonal one. For convenience, we will set $z_{i}=\exp \left(x_{i}\right)$, $Z=\sum_{i=1}^{n} \exp \left(x_{i}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$.

$$
H_{f}(x, y)_{(i, j)}=\left\{\begin{array}{l}
\frac{z_{i} Z-z_{i}^{2}}{Z^{2}} \quad \text { if } \quad i=j \\
-\frac{z_{i} z_{j}}{Z^{2}} \quad \text { if } \quad i \neq j
\end{array}\right.
$$

Correction 5/6

Using the previous notations, we can write :

$$
H_{f}(x, y)_{(i, j)}=\frac{1}{Z} \operatorname{diag}(z)-\frac{1}{Z^{2}} z z^{T} .
$$

To proove that this function is convex, we will show that for vector $u \in \mathbb{R}^{n}$ we have $u^{T} H_{f} u \geq 0$.

$$
u^{T} H_{f} u=\frac{1}{Z^{2}}\left(\left(\sum_{i=1}^{n} u_{i}^{2} z_{i}\right)\left(\sum_{i=1}^{n} z_{i}\right)-\left(\sum_{i=1}^{n} u_{i} z_{i}\right)^{2}\right) .
$$

We need to show that is expression is non-negative. For that, we use the Cauchy-Schwarz Inequality. So we will introduce inner product and norms.

Correction 6/6

Note that : $\sum_{i=1}^{n} u_{i}^{2} z_{i}=\left\|u_{i} \sqrt{z_{i}}\right\|_{2}^{2}, \sum_{i=1}^{n} z_{i}=\left\|\sqrt{z_{i}}\right\|_{2}^{2}$ and $\left(\sum_{i=1}^{n} u_{i} z_{i}\right)^{2}=\left\|u_{i} z_{i}\right\|_{2}^{2}$. So that :

$$
u^{T} H_{f} u=\frac{1}{Z^{2}}\left(\|u \sqrt{z}\|\|\sqrt{z}\|-\langle u \sqrt{z}, \sqrt{z}\rangle^{2}\right) .
$$

We can bound the inner product as follow :

$$
\langle u \sqrt{z}, \sqrt{z}\rangle^{2} \leq\|u \sqrt{z}\|\|\sqrt{z}\| .
$$

We conclude that :

$$
u^{T} H_{f} u \geq 0 .
$$

Convex Optimization

Condition of Optimality

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. We say that $u \in \mathbb{R}^{n}$ is a local minimum of f if it exists a neighborhood $V \subset \mathbb{R}^{n}$ of u such that :

$$
f(u) \leq f(v), \quad \forall v \in V
$$

u is a global minimum of the function f if and only if :

$$
f(u) \leq f(v), \quad \forall v \in \mathbb{R}^{n} .
$$

- x_{1} and x_{2} are two local minima of f.
- x_{2} is the global minimum of the function f

Condition of Optimality

Proposition : - Euler's Equation -

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and differentiable at $u \in \mathbb{R}^{n}$. If u is a local minimum then we have : $\nabla f(u)=0$.

Condition of Optimality

Proposition :- Euler's Equation-

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and differentiable at $u \in \mathbb{R}^{n}$. If u is a local minimum then we have : $\nabla f(u)=0$.

Proof: In fact, using the definition: $\forall v \in \mathbb{R}^{n}, \exists t>0$ such that $u+t v \in V$ a neighborhood of u.

$$
\begin{aligned}
f(u) & \leq f(u+t v)=f(u)+\nabla f(u)(t v)+t v \varepsilon(t v), \quad t \ll 1 \\
\Longleftrightarrow \quad 0 \quad & \leq \nabla f(u)(t v)+t v \varepsilon(t v)
\end{aligned}
$$

Dividing by $t>0$ and taking the limit $t \rightarrow 0$ we have : $0 \leq \nabla f(u) v$. Same thing by replacing $v \rightarrow-v$ we have $0 \leq-\nabla f(u) v$.
So $\forall v \in \mathbb{R}^{n}, \quad \nabla f(u) v=0 \Rightarrow \nabla f(u)=0$.

Condition of Optimality

The solution of Euler's Equation gives us the points where the function f reaches a local extremum (a minimum or maximum (local or global)).

Given a solution u of $\nabla f(u)=0$, we can say that:

- u is local minimum if $\nabla^{2} f(u)=H_{f}(u) \geq 0$, i.e. the Hessian matrix evaluated at the point u is PSD. This point is a global minimum if the function is convex everywhere or if for all $v \neq u$ we have $f(u) \leq f(v)$.
- u is local maximum if $\nabla^{2} f(u)=H_{f}(u) \leq 0$, i.e. the Hessian matrix evaluated at the point u is NSD. This point is a global maximum if the function is concave everywhere or if for all $v \neq u$ we have $f(u) \geq f(v)$.

Condition of Optimality

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and \mathcal{U} a non empty set. We say that f has a relative minimum u if

$$
f(u) \leq f(v), \quad \forall v \in \mathcal{U}
$$

Proposition : - Euler's Inequality -

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and \mathcal{U} a non empty and convex set. Furthermore, let $u \in \mathcal{U}$ be a relative minimum of f. If f is differentiable at u we have : $\nabla f(u)(v-u) \geq 0 \forall v \in \mathcal{U}$.

Exercise

- Let f defined by $f(x, y)=(4-2 y)^{2}+5 x^{2}+x+3 y+4 x y$

1. Is the function f convex ?
2. What is the global minimum of f ?

- Let f defined by $f(x, y)=2 x^{2}+4(y-2)^{2}+4 x+6 y-2 x y+2 y^{3}$.

1. Is f convex?
2. Give a condition on y so that f is convex.
3. (Optional) For the previous condition on y, find the local minimum of f
4. The function f is convex. In fact, we have :

$$
H_{f(x, y)}=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial^{2} x} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial^{2} y}
\end{array}\right)=\left(\begin{array}{cc}
10 & 4 \\
4 & 8
\end{array}\right) .
$$

Because f is convex, if we find (x, y) such that $\nabla f(x, y)=0$ then (x, y) is the Argmin of f.

$$
J_{f(x, y)}=(10 x+4 y+1, \quad 4 x+8 y-13)=(0,0)
$$

The solution is $(x, y)=\left(-\frac{15}{16}, \frac{67}{32}\right)$.
2) Same as before, we calculate the Hessian matrix :

$$
H_{f(x, y)}=\left(\begin{array}{cc}
4 & -2 \\
-2 & 12 y+8
\end{array}\right)
$$

We have $\operatorname{Tr}(H)=12 y+12$ and $\operatorname{det}(H)=48 y+28$. These quantities are both positie if and only if $y \geq-\frac{28}{48}=-\frac{7}{12}$.
So the function is not convex on \mathbb{R}^{2}, but it is on $\mathbb{R} \times\left[-\frac{7}{12}, \infty[\right.$.

- You have to solve the following system :

$$
\begin{array}{r}
4 x+4-2 y=0, \\
6 y^{2}+8 y-2 x-10=0 . \\
\\
4 x+4-2 y=0, \\
6 y^{2}+7 y-8=0 .
\end{array}
$$

You solve the following system, keeping the appropriate value of y and then you calculate x.

Convex Problems

The basic formulation

Given a vector space E and a function $f: E \rightarrow \mathbb{R}$, an optimization problem consists of solving the following problem :

$$
\min _{x \in E} f(x)
$$

- The function f is sometimes called the cost function (ie, cost for a company to store goods).
- Most of times, we want to minimize the function f under some constraints.

Linear Regression 1/3

Let us first consider the linear regression :

- Given a response vector $Y \in \mathbb{R}^{n}$ and feature vectors $X=\left(x_{1}, \ldots, x_{n}\right)^{T}, x_{i} \in \mathcal{R}^{m}$ where $m+1<n$. We'd like to find a vector β that explain the value of Y using X with the following model

$$
Y=X \beta+\varepsilon, \quad \text { where } \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- ε represent the error due to the model. To find the best vector β we have to minimize this error, i.e. to solve :

$$
\min _{\beta \in \mathbb{R}^{m+1}} \varepsilon\|Y-X \beta\|^{2}
$$

Linear Regression 2/3

Linear Regression 3/3

We easily check that is problem is convex :

$$
\nabla_{\beta} \varepsilon=-2 X^{T}(Y-X \beta),
$$

and

$$
\nabla_{\beta}^{2}=2 X^{T} X,
$$

which is positive semi definite.
The solution given by

$$
\beta=\left(X^{T} X\right)^{-1} X^{T} Y .
$$

Analytic solution exists but this is not always the case

Logistic regression 1/2

We want to find a model that predict the class of our data.

Logistic Regression 2/2

- To predict the class of the individual we use a model of the form :

$$
g(x, a)=\log \left(\frac{\mathbb{P}(X \mid Y=1)}{1-\mathbb{P}(X \mid Y=1)}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{m} x_{m} .
$$

- Solved by maximizing the (log-)likelihood of our data :

$$
l(x, a)=\sum_{i=1}^{n} y_{i} \log \left(p_{i}\right)+\left(1-y_{i}\right) \log \left(1-p_{i}\right), p_{i}=\frac{1}{1+\exp \left(-\sum_{j=1}^{m} a_{j} x_{i j}\right)} .
$$

No analytic solution, we need a way to approximate it step by step.

