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Convex Problems

What is a convex optimization problem ?

Given a convex function f : Rn → R we would solve the problem :

x̂ = arg min
x∈Rn

f(x).

The aim of this part is to introduce algorithms building a series (xn)n∈N
which converges to x̂.
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Convex Problems

Optimization

There exists several type of optimization problems :
▶ convex optimization as presented before
▶ constrained optimization problem,
▶ non convex optimization problem,
▶ non differentiable convex optimization problem
▶ ...

we only focus on convex optimization problem !
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Convex Problems

Why do we study them

1. Cornerstone in modern Machine Learning.
2. Convex function can be optimized easier (Gradient Descent vs

Newton’s Method.)
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Convex Problems

Convex Functions

Which of the following functions are convex graphically ?
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Convex Problems

Convex Functions

Definition
Let U be an on empty set of a vector space (U = Rn). A function
f : U → R is said to be convex if, for every (u, v) ∈ U and for all
t ∈ [0, 1], we have :

f(tu + (1 − t)v) ≤ tf(u) + (1 − t)f(v).

▶ A linear function is convex,
▶ f : R → R, f(x) = x2,
▶ f : R → R, f(x) = exp(x).
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Convex Problems

A convex function and its chord
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Convex Problems

Convex Functions and line segment

Proposition
A function f : Rn → R is convex if and only the function

g(t) = f(x + tv) is convex
for all x, v such that x + tv belongs to the domain of definition of f

(f is concave if and only if g is concave).
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Convex Problems

Convex Functions

Exercise

Show that the function F : R → R, f(x) = x2 is convex.

Solution : we need to show (tx + (1 − t)y)2 ≤ tx2 + (1 − t)y2.

⇐⇒ t2x2 + 2t(1 − t)xy + (1 − t)2y2 ≤ tx2 + (1 − t)y2,

⇐⇒ (t2 − t)x2 + 2t(1 − t)xy + ((1 − t)2 − (1 − t))y2 ≤ 0,

⇐⇒ t(t − 1)x2 − 2t(t − 1)xy + t(t − 1)y2 ≤ 0,

⇐⇒ t(t − 1)(x − y)2 ≤ 0,
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Convex Problems

Convex functions

Equivalent definition
A function f is convex on U if and only if its epigraph E is convex, where
E = {(x, y) ∈ U | f(x) ≤ y}.

Epigraph is the blue domain, which is convex
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Convex Problems

Concavity

Remark
Let U be an on empty set of a vector space (U = Rn). A function
f : U → R is said to be concave if, for every (u, v) ∈ U and for all
t ∈ [0, 1], we have :

f(tu + (1 − t)v) ≥ tf(u) + (1 − t)f(v).

If f is concave, then −f is a convex function.

The function f defined by f(x) = ln(x) is concave.
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Convex Problems

Convex Functions

1. Given two convex functions f and g defined on U , the sum f + g is
also a convex function.

2. If f is an increasing and convex function, g a convex function, then
f ◦ g(x) is convex.

3. If f and g are convex functions, then h defined by
h(u) = max (f(u), g(u)) is also convex

Exercise
Prove the two first points using the definition of convexity.
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Convex Problems

Correction

1. For this one, you have to notice that (f + g)(x) = f(x) + g(x) and
apply the definition of convexity

2.

g(tx + (1 − t)y)) ≤ tg(x) + (1 − t)g(y)
f(g(tx + (1 − t)y))) ≤ f(tg(x) + (1 − t)g(y))
f(g(tx + (1 − t)y))) ≤ tf(g(x)) + (1 − t)f(g(y))
f ◦ g(tx + (1 − t)y) ≤ tf ◦ g(x) + (1 − t)f ◦ g(y)

Antoine Gourru OOR Course Master MLDM 14 / 46



Convex Problems

Convex Loss Functions
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Convex Problems

Convexity and differentiability

Proposition
Let f be a continuously differentiable function (C1) on U . Then f is
convex if and only if, for all (u, v) ∈ U , we have :

f(v) ≥ f(u) + ∇f(u)(v − u).

Equivalently if and only if, for all (u, v) ∈ U , we have :

(∇f(v) − ∇f(u))(v − u) ≥ 0
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Convex Problems
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Convex Problems

Convexity and differentiability

Definition
Let f be a function of class C2 on U and let H be its Hessian. Then f is
convex if :
▶ ∇2f(u) ≥ 0 for all u ∈ U .
▶ H is a positive semi definite (PSD), i.e, ∀u ∈ U

uT Hu ≥ 0.

Recall
A matrix H is PSD if and only if all of it’s eigenvalues are non-negative
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Convex Problems

Convexity and differentiability

Interpretation
Positive eigenvalues imply that the gradient is an increasing

function along each direction of the space

We consider a 2 × 2 matrix A :

A =
(

a b
c d

)
,

where a, b, c, d are real numbers. We denote by λ1, λ2 the eigenvalues of
this matrix (roots of the polynomial det(XI2 − A)).
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Convex Problems

Convexity and differentiability

1. We’ll show why, for a 2×2 matrix, we have the following equivalence :
A is PSD ⇐⇒ Tr(A) ≥ 0 and det(A) ≥ 0.

2. We have det(XI2 − A)) = x2 − (a + d)x + ad − bc. The roots of
this polynomial are exactly the eigenvalues of the matrix A (by
definition), so

det(XI2 − A) = (x − λ1)(x − λ2) = x2 − (λ1 + λ2)x + λ1λ2.

So we have, for all x ∈ R :

x2 − (a + d)x + ad − bc = x2 − (λ1 + λ2)x + λ1λ2.

3. It implies : λ1 + λ2 = a + d = Tr(A) and λ1λ2 = ad − bc = det(A).

Antoine Gourru OOR Course Master MLDM 20 / 46



Convex Problems

Convexity and differentiability

1. We’ll show why, for a 2×2 matrix, we have the following equivalence :
A is PSD ⇐⇒ Tr(A) ≥ 0 and det(A) ≥ 0.

2. We have det(XI2 − A)) = x2 − (a + d)x + ad − bc. The roots of
this polynomial are exactly the eigenvalues of the matrix A (by
definition), so

det(XI2 − A) = (x − λ1)(x − λ2) = x2 − (λ1 + λ2)x + λ1λ2.

So we have, for all x ∈ R :

x2 − (a + d)x + ad − bc = x2 − (λ1 + λ2)x + λ1λ2.

3. It implies : λ1 + λ2 = a + d = Tr(A) and λ1λ2 = ad − bc = det(A).

Antoine Gourru OOR Course Master MLDM 20 / 46



Convex Problems

Convexity and differentiability

1. We’ll show why, for a 2×2 matrix, we have the following equivalence :
A is PSD ⇐⇒ Tr(A) ≥ 0 and det(A) ≥ 0.

2. We have det(XI2 − A)) = x2 − (a + d)x + ad − bc. The roots of
this polynomial are exactly the eigenvalues of the matrix A (by
definition), so

det(XI2 − A) = (x − λ1)(x − λ2) = x2 − (λ1 + λ2)x + λ1λ2.

So we have, for all x ∈ R :

x2 − (a + d)x + ad − bc = x2 − (λ1 + λ2)x + λ1λ2.

3. It implies : λ1 + λ2 = a + d = Tr(A) and λ1λ2 = ad − bc = det(A).

Antoine Gourru OOR Course Master MLDM 20 / 46



Convex Problems

Convexity and differentiability

1. (⇒) If the eigenvalues are positive, we immediately see that both :

Tr(A) > 0 and det(A) ≥ 0.

2. (⇐) Conversely, if det(A) ≥ 0 it means that the two eigenvalues
have the same sign. Moreover, if the trace is positive then the two
eigenvalues are positive.
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Convex Problems

Convexity and differentiability

Remark
A matrix A is said to be NSD (Negative Semi-Definite) if its eigenvalues
are non-positive. A 2 × 2 matrix A is NSD if we have :

Tr(A) < 0 and det(A) ≥ 0.
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Convex Problems

Examples

▶ If for all i = 1, . . ., n, λi ≥ 0, then H = diag(λi) is PSD.
▶ The function f : Rn → R defined by f(x1, . . ., xn) =

∑n
i=1 x2

i is
convex.

Exercises
▶ Show that the function f : R2 → R defined by

f(x, y) = 2x2 + 2xy + 2y2 is convex.
▶ Show that the function f : R3 → R defined by

f(x, y, z) = 5x2 + 2
√

2xy + 6y2 + 3z2 is convex.
▶ Show that the function f : Rn → R defined by

f(x) = log
(∑N

i=1 exi

)
is convex.
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Convex Problems

Correction 1/6

For the two first functions, you have to check that all the eigenvalues of
the Hessian Matrix are non-negative. So you need : 1) to compute the
Hessian Matrix of the given function and 2) to compute the eigenvalues
of this last. Remember that the eigenvalues of a given matrix H are given
by finding the roots of the following polynomial in λ :

det(H − λId)

Antoine Gourru OOR Course Master MLDM 24 / 46



Convex Problems

Correction 2/6

• For the first function, the Hessian Matrix is given by :

Hf (x, y) =
(

4 2
2 4

)
,

The eigenvalues are then given by finding the roots of the polynom :

det (Hf (x, y) − λI2) = det

(
4 − λ 2

2 4 − λ

)
= (4−λ)2−22 = (λ−2)(λ−6).

The eigenvalues are 2 and 6, they are non-negative so the function f is
convex.
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Convex Problems

Correction 3/6

• For the second function, the Hessian Matrix is given by :

Hf (x, y) =

 10 2
√

2 0
2
√

2 12 0
0 0 6

 ,

The eigenvalues are then given by finding the roots of the polynom :

det (Hf (x, y) − λI3) = det

 10 − λ 2
√

2 0
2
√

2 12 − λ 0
0 0 6 − λ

 .

det (Hf (x, y) − λI3) = (6−λ)[(10−λ)(12−λ)−8] = (6−λ)(λ−8)(λ−14).

The eigenvalues are 6, 8 and 14, they are non-negative so the function f
is convex.
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Convex Problems

Correction 4/6

• For this last function, we will use the expression of the Jacobian
previously computed :

Jf (x) = 1∑n
i=1 exp(xi)

(exp(x1, ..., exp(xn))

Then we compute the Hessian, we will seperate the diagonal terms with
the non-diagonal one. For convenience, we will set zi = exp(xi),
Z =

∑n
i=1 exp(xi) and z = (z1, ..., zn).

Hf (x, y)(i,j) =


ziZ − z2

i

Z2 if i = j

−zizj

Z2 if i ̸= j
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Convex Problems

Correction 5/6

Using the previous notations, we can write :

Hf (x, y)(i,j) = 1
Z

diag(z) − 1
Z2 zzT .

To proove that this function is convex, we will show that for vector
u ∈ Rn we have uT Hf u ≥ 0.

uT Hf u = 1
Z2

( n∑
i=1

u2
i zi

)(
n∑

i=1
zi

)
−

(
n∑

i=1
uizi

)2
 .

We need to show that is expression is non-negative. For that, we use the
Cauchy-Schwarz Inequality. So we will introduce inner product and
norms.
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Convex Problems

Correction 6/6

Note that :
∑n

i=1 u2
i zi = ∥ui

√
zi∥2

2,
∑n

i=1 zi = ∥√
zi∥2

2 and
(
∑n

i=1 uizi)
2 = ∥uizi∥2

2. So that :

uT Hf u = 1
Z2

(
∥u

√
z∥∥

√
z∥ − ⟨u

√
z,

√
z⟩2) .

We can bound the inner product as follow :

⟨u
√

z,
√

z⟩2 ≤ ∥u
√

z∥∥
√

z∥.

We conclude that :
uT Hf u ≥ 0.
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Convex Problems

Convex Optimization
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Convex Problems

Condition of Optimality

Definition
Let f : Rn → R be a continuous function. We say that u ∈ Rn is a local
minimum of f if it exists a neighborhood V ⊂ Rn of u such that :

f(u) ≤ f(v), ∀v ∈ V.

u is a global minimum of the function f if and only if :

f(u) ≤ f(v), ∀v ∈ Rn.
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Convex Problems

• x1 and x2 are two local minima of f .
• x2 is the global minimum of the function f
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Convex Problems

Condition of Optimality

Proposition : - Euler’s Equation -
Let f : Rn → R be a continuous function and differentiable at u ∈ Rn. If
u is a local minimum then we have : ∇f(u) = 0.

Proof : In fact, using the definition : ∀v ∈ Rn, ∃t > 0 such that
u + tv ∈ V a neighborhood of u.

f(u) ≤ f(u + tv) = f(u) + ∇f(u)(tv) + tv ε(tv), t ≪ 1
⇐⇒ 0 ≤ ∇f(u)(tv) + tv ε(tv)

Dividing by t > 0 and taking the limit t → 0 we have : 0 ≤ ∇f(u)v.
Same thing by replacing v → −v we have 0 ≤ −∇f(u)v.
So ∀v ∈ Rn, ∇f(u)v = 0 ⇒ ∇f(u) = 0.
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Convex Problems

Condition of Optimality

The solution of Euler’s Equation gives us the points where the function f
reaches a local extremum (a minimum or maximum (local or global)).

Given a solution u of ∇f(u) = 0, we can say that :
• u is local minimum if ∇2f(u) = Hf (u) ≥ 0, i.e. the Hessian matrix

evaluated at the point u is PSD. This point is a global minimum if
the function is convex everywhere or if for all v ̸= u we have
f(u) ≤ f(v).

• u is local maximum if ∇2f(u) = Hf (u) ≤ 0, i.e. the Hessian matrix
evaluated at the point u is NSD. This point is a global maximum if
the function is concave everywhere or if for all v ̸= u we have
f(u) ≥ f(v).
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Convex Problems

Condition of Optimality

Definition
Let f : Rn → R be a continuous function and U a non empty set. We say
that f has a relative minimum u if

f(u) ≤ f(v), ∀v ∈ U .

Proposition : - Euler’s Inequality -
Let f : Rn → R be a continuous function and U a non empty and convex
set. Furthermore, let u ∈ U be a relative minimum of f . If f is
differentiable at u we have : ∇f(u)(v − u) ≥ 0 ∀v ∈ U .

Antoine Gourru OOR Course Master MLDM 35 / 46



Convex Problems

Exercise
• Let f defined by f(x, y) = (4 − 2y)2 + 5x2 + x + 3y + 4xy

1. Is the function f convex ?
2. What is the global minimum of f ?

• Let f defined by f(x, y) = 2x2 + 4(y − 2)2 + 4x + 6y − 2xy + 2y3.
1. Is f convex ?
2. Give a condition on y so that f is convex.
3. (Optional) For the previous condition on y, find the local minimum

of f
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Convex Problems

1. The function f is convex. In fact, we have :

Hf(x,y) =


∂2f

∂2x

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂2y

 =
(

10 4
4 8

)
.

Because f is convex, if we find (x, y) such that ∇f(x, y) = 0 then
(x, y) is the Argmin of f .

Jf(x,y) =
(

10x + 4y + 1, 4x + 8y − 13
)

= (0, 0).

The solution is (x, y) = (−15
16 ,

67
32).
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Convex Problems

2) Same as before, we calculate the Hessian matrix :

Hf(x,y) =
(

4 −2
−2 12y + 8

)
.

We have Tr(H) = 12y + 12 and det(H) = 48y + 28. These
quantities are both positie if and only if y ≥ −28

48 = − 7
12 .

So the function is not convex on R2, but it is on R × [− 7
12 , ∞[.

Antoine Gourru OOR Course Master MLDM 38 / 46



Convex Problems

• You have to solve the following system :

4x + 4 − 2y = 0,

6y2 + 8y − 2x − 10 = 0.

4x + 4 − 2y = 0,

6y2 + 7y − 8 = 0.

You solve the following system, keeping the appropriate value of y and
then you calculate x.
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Convex Problems

Convex Problems
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Convex Problems

The basic formulation

Given a vector space E and a function f : E → R, an optimization
problem consists of solving the following problem :

min
x∈E

f(x).

• The function f is sometimes called the cost function (ie, cost for a
company to store goods).

• Most of times, we want to minimize the function f under some
constraints.
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Convex Problems

Linear Regression 1/3

Let us first consider the linear regression :

• Given a response vector Y ∈ Rn and feature vectors
X = (x1, . . ., xn)T , xi ∈ Rm where m + 1 < n.
We’d like to find a vector β that explain the value of Y using X with the
following model

Y = Xβ + ε, where ε ∼ N (0, σ2).

• ε represent the error due to the model. To find the best vector β we
have to minimize this error, i.e. to solve :

min
β∈Rm+1

ε∥Y − Xβ∥2
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Convex Problems

Linear Regression 2/3
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Convex Problems

Linear Regression 3/3

We easily check that is problem is convex :

∇β ε = −2XT (Y − Xβ),

and
∇2

β = 2XT X,

which is positive semi definite.
The solution given by

β = (XT X)−1XT Y.

Analytic solution exists but this is not always the case
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Convex Problems

Logistic regression 1/2

We want to find a model that predict the class of our data.
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Convex Problems

Logistic Regression 2/2

• To predict the class of the individual we use a model of the form :

g(x, a) = log
(

P(X | Y = 1)
1 − P(X | Y = 1)

)
= a0 + a1x1 + . . . + amxm.

• Solved by maximizing the (log-)likelihood of our data :

l(x, a) =
n∑

i=1
yi log(pi)+(1−yi) log(1−pi), pi = 1

1 + exp(−
∑m

j=1 ajxij)
.

No analytic solution, we need a way to approximate it step by step.
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