# Optimization \& Operational Research : Second Part 

Antoine Gourru

Slides built by Guillaume Metzler, updated by levgen Redko and Anna Karolin

January 2024 - Semester II

## Algorithms

## Setup

Given a function $f$ and a non empty set $\mathcal{U}$ and knowing there is a solution to the problem : $f(u)=\min _{v \in \mathcal{U}} f(v)$.
Idea : build a series $\left(u_{k}\right)_{k \in \mathbb{N}}$ which converges to $u$.

## Setup

Given a function $f$ and a non empty set $\mathcal{U}$ and knowing there is a solution to the problem : $f(u)=\min _{v \in \mathcal{U}} f(v)$.
Idea : build a series $\left(u_{k}\right)_{k \in \mathbb{N}}$ which converges to $u$.

## Algorithm :



- Take an initial value $u_{0}$.
- $u_{k} \rightarrow u_{k+1}$ : Choose a direction $d_{k}$ and minimize the function $f$ along this direction.
- Solve
$\underset{\rho>0}{\arg \min } f\left(u_{k}-\rho d_{k}\right)=\rho_{k}$
- $u_{k+1}=u_{k}-\rho_{k} d_{k}$


## Direction of descent

How to choose the direction $d_{k}$ ?


Some ways seem to be faster than others to reach the solution

## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )
4. Leads to the algorithm

## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )
4. Leads to the algorithm

## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )

## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )
4. Leads to the algorithm


## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )
4. Leads to the algorithm

- Choose $u_{0}$ to initialize the algorithm,


## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )
4. Leads to the algorithm

- Choose $u_{0}$ to initialize the algorithm,
- set $u_{k+1}=u_{k}-\rho_{k} \nabla f\left(u_{k}\right)$ for $\rho_{k}>0$


## Direction of descent

1. Recall that

$$
f\left(u_{k}-\rho d_{k}\right)=f\left(u_{k}\right)-\rho\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle+\rho \varepsilon(\rho)
$$

when $\rho$ is close to 0
2. To minimize $f$ we choose $d_{k}$ that maximizes $\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle$
3. Due to Cauchy-Scwhartz Inequality, we have $d_{k}=\frac{\nabla f\left(u_{k}\right)}{\left\|f\left(u_{k}\right)\right\|}$ (assuming $\left\|d_{k}\right\|=1$ )
4. Leads to the algorithm

- Choose $u_{0}$ to initialize the algorithm,
- set $u_{k+1}=u_{k}-\rho_{k} \nabla f\left(u_{k}\right)$ for $\rho_{k}>0$
- till $\left\|\nabla f\left(u_{k}\right)\right\| \leq \varepsilon$.


## Summing up

1. There exists several ways to use the gradient
2. We focus on gradient descent algorithms and their variants.

- Gradient Descent, Line Search, Newton's Method,...

Other algorithms that do not rely on the derivatives of the function.

## Gradient descent : choose the step $1 / 3$



## Gradient descent : choose the step $2 / 3$



## Gradient descent : choose the step $3 / 3$

- If the step is too large, the sequence oscillates near the optimum.
- If the step is too small, the algorithm needs a large number of iterations.

Can choose the step for the gradient descents method optimally !

## Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a given direction.

## Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a given direction.

- Choose $u_{0}$ to initialize the algorithm,
- for $k=0,1, \ldots$ solve $\arg \min f\left(u_{k}-\rho \nabla f\left(u_{k}\right)\right)$,

$$
\rho>0
$$

- set $u_{k+1}=u_{k}-\rho_{k} \nabla f\left(u_{k}\right)$
- till $\left\|\nabla f\left(u_{k}\right)\right\| \leq \varepsilon$.


## Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a given direction.

- Choose $u_{0}$ to initialize the algorithm,
- for $k=0,1, \ldots$ solve $\arg \min f\left(u_{k}-\rho \nabla f\left(u_{k}\right)\right)$,

$$
\rho>0
$$

- set $u_{k+1}=u_{k}-\rho_{k} \nabla f\left(u_{k}\right)$
- till $\left\|\nabla f\left(u_{k}\right)\right\| \leq \varepsilon$.

This algorithm is called the Gradient Descent with optimal step.

## Gradient descent : with optimal step

## Definition

Let $f$ be a convex and continuously differentiable function on $\mathbb{R}^{n}$. We say that $f$ is strongly convex or $\alpha$-elliptical if it exists $\alpha>0$ such that

$$
\langle\nabla f(v)-\nabla f(u), v-u\rangle \geq \alpha\|v-u\|, \forall u, v \in \mathbb{R}^{n}
$$

What can we say about $\left\langle\nabla f\left(u_{k+1}\right), \nabla f\left(u_{k}\right)\right\rangle$ based on

$$
\rho_{k}=\underset{\rho>0}{\arg \min } f\left(u_{k}-\rho d_{k}\right) ?
$$

## Gradient descent : with optimal step

If $\rho_{k}$ minimize $f\left(u_{k}-\rho_{k} d_{k}\right)$ we have:

$$
\begin{gathered}
\left.\frac{\partial}{\partial \rho} f\left(u_{k}-\rho \nabla f\left(u_{k}\right)\right)\right|_{\rho=\rho_{k}}=0, \\
\Longleftrightarrow\left\langle\nabla f\left(u_{k}-\rho_{k} \nabla f\left(u_{k}\right), \nabla f\left(u_{k}\right)\right\rangle=0,\right. \\
\Longleftrightarrow\left\langle\nabla f\left(u_{k+1}\right), \nabla f\left(u_{k}\right)\right\rangle=0 .
\end{gathered}
$$

The last equality is called the optimality condition.

## Proposition

If $f$ is a strongly convex then GD with optimal step converges

## Gradient descent : with optimal step

Let $A$ be a symmetric and PSD and $b \in \mathbb{R}^{n}$. We want to optimize

$$
f(v)=\frac{1}{2}\langle A v, v\rangle-\langle b, v\rangle
$$

- Calculate the gradient: $\nabla f\left(u_{k}\right)=A u_{k}-b$
- We then have to solve : $\rho_{k}=\arg \min f\left(u_{k}-\rho d_{k}\right)$. The optimality condition gives us : $\left\langle\nabla f\left(u_{k}\right), \nabla f\left(u_{k+1}\right)\right\rangle=0$

$$
\begin{aligned}
\nabla f\left(u_{k+1}\right) & =A u_{k+1}-b \\
& =A\left(u_{k}-\rho_{k}\left(A u_{k}-b\right)-b\right. \\
& =A u_{k}-b-\rho_{k} A\left(A u_{k}-b\right)
\end{aligned}
$$

## Gradient descent : with optimal step

$$
\begin{array}{ll}
\Rightarrow\left\langle A u_{k}-b, A u_{k}-b-\rho_{k} A\left(A u_{k}-b\right)\right\rangle & =0 \\
\Rightarrow\left\langle A u_{k}-b, A u_{k}-b\right\rangle & =\left\langle A u_{k}-b, \rho_{k} A\left(A u_{k}-b\right)\right\rangle \\
\Rightarrow \rho_{k} & =\frac{\left\langle A u_{k}-b, A u_{k}-b\right\rangle}{\left\langle A u_{k}-b, A\left(A u_{k}-b\right)\right\rangle}
\end{array}
$$

We finally have the following algorithm :

- Initialize $u_{0} \in \mathbb{R}^{n}$
- At each step, calculate $\rho_{k}=\frac{\left\|A u_{k}-b\right\|^{2}}{\left\|A u_{k}-b\right\|_{A}^{2}}$
- Set $u_{k+1}=u_{k}-\rho_{k}\left(A u_{k}-b\right)$
- Stop if $\left\|\nabla J\left(u_{k+1}\right)\right\|=\left\|A u_{k+1}-b\right\| \leq \epsilon$


## Gradient descent : with optimal step

## Exercise

Consider the matrices $A=\left(\begin{array}{ll}6 & 2 \\ 2 & 4\end{array}\right)$ and $b=\binom{2}{3}$ and the application $f$ defined by $f(v)=\langle A v, v\rangle+\langle b, v\rangle$

1. Explain why $f$ in convex.
2. Solve the problem $u=\arg \min f(v)$.

$$
v \in \mathbb{R}^{2}
$$

3. For a given vector $u_{k}$, calculate $\nabla f_{u_{k}}$ and $\rho_{k}$.
4. Implement the presented method to solve this problem.

## Correction

- $f$ is defined as a quadratic function where $A$ is PSD, so $f$ is convex.
- We have to solve :

$$
J_{f(x, y)}=(12 x+4 y+2, \quad 4 x+8 y+3)=(0,0) .
$$

The solution is $\left(-\frac{1}{20},-\frac{7}{20}\right)$.

- Let set $u_{k}=\left(v_{1}, v_{2}\right)$ then :

$$
\nabla f_{u_{k}}=\left(12 v_{1}+4 v_{2}+2, \quad 4 v_{1}+8 v_{2}+3\right),
$$

and $\rho_{k}=\frac{\left\|2 A u_{k}+b\right\|_{2}^{2}}{\left\|2 A u_{k}+b\right\|_{A}^{2}}$

## Exercise

Let $f$ be the function defined by : $f(x, y)=4 x^{2}-4 x y+2 y^{2}$.

1. Is the function $f$ convex?
2. Apply the gradient descent with optimal step to calculate the three first steps of the algorithm using $\left(x_{0}, y_{0}\right)=(1,1)$.

## Correction 1/3

- The function $f$ can be rewritten as : $f(u)=\frac{1}{2} u^{T} A u-b^{T} u$, where $b=(0,0)^{T}$ and $A=\left(\begin{array}{cc}8 & -4 \\ -4 & 4\end{array}\right)$. The function $f$ is a quadratic function, furthermore the matrix $A$ is $\operatorname{PSD}$ so the function $f$ is convex.
- The optimal learning rate is given by :

$$
\rho_{k} \frac{\left\|A u_{k}-b\right\|_{2}^{2}}{\left\|A u_{k}-b\right\|_{A}^{2}}
$$

where the matrix $A$ and the vector $b$ were previously introduced.

## Correction 2/3

- The function $f$ can be rewritten as : $f(u)=\frac{1}{2} u^{T} A u-b^{T} u$, where $b=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}$ and $A=\left(\begin{array}{cc}8 & -4 \\ -4 & 4\end{array}\right)$. The function $f$ is a quadratic function, furthermore the matrix $A$ is $\operatorname{PSD}$ so the function $f$ is convex.
- The optimal learning rate is given by :

$$
\rho_{k}=\frac{\left\|A u_{k}-b\right\|_{2}^{2}}{\left\|A u_{k}-b\right\|_{A}^{2}}
$$

where the matrix $A$ and the vector $b$ were previously introduced. Recall that the process is defined by :

$$
u_{k+1}=u_{k}-\rho_{k} \nabla f\left(u_{k}\right)
$$

We will now apply this process to compute the three first iterations.

## Correction 3/3

1. For the first iteration : $\rho_{0}=\frac{\left\|A u_{0}\right\|_{2}^{2}}{\left\|A u_{0}\right\|_{A}^{2}}=\frac{16}{128}=\frac{1}{8}$. And

$$
\begin{aligned}
\nabla f\left(u_{0}\right)=A u_{0} & =\left(\begin{array}{ll}
4 & 0
\end{array}\right)^{T} \\
& u_{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{T}-\frac{1}{8}\left(\begin{array}{ll}
4 & 0
\end{array}\right)^{T}=\left(\begin{array}{lll}
0.5 & 1
\end{array}\right)^{T} .
\end{aligned}
$$

2. For the second iteration : $\nabla f\left(u_{1}\right)=A u_{1}=(02)^{T}$. The learning rate is given by : $\rho_{1}=\frac{\left\|A u_{1}\right\|_{2}^{2}}{\left\|A u_{1}\right\|_{A}^{2}}=\frac{4}{16}=\frac{1}{4}$. Thus $u_{2}$ is given by :

$$
u_{2}=(0.51)^{T}-\frac{1}{4}(02)^{T}=(0.50 .5)^{T} .
$$

3. For the third iteration: $\nabla f\left(u_{2}\right)=A u_{2}=(20)^{T}$. The learning rate is given by : $\rho_{2}=\frac{\left\|A u_{2}\right\|_{2}^{2}}{\left\|A u_{2}\right\|_{A}^{2}}=\frac{4}{32}=\frac{1}{8}$. Thus $u_{3}$ is given by :

$$
u_{3}=(0.50 .5)^{T}-\frac{1}{8}(20)^{T}=(0.250 .5)^{T} .
$$

## Gradient Descent : Armijo Criterium

Idea : use a linear search to find the learning rate.
Given a $\theta \in] 0,1[$, choose the greatest $\rho$ such that :

$$
f\left(u_{k}-\rho \nabla f\left(u_{k}\right)\right) \leq f\left(u_{k}\right)-\theta \rho\left\|\nabla f\left(u_{k}\right)\right\|^{2} .
$$

At each step, we reduce the function's value of at least $\theta\left\|\nabla f\left(u_{k}\right)\right\|$.

## Gradient Descent : Armijo Criterium

Idea : use a linear search to find the learning rate.
Given a $\theta \in] 0,1[$, choose the greatest $\rho$ such that :

$$
f\left(u_{k}-\rho \nabla f\left(u_{k}\right)\right) \leq f\left(u_{k}\right)-\theta \rho\left\|\nabla f\left(u_{k}\right)\right\|^{2}
$$

At each step, we reduce the function's value of at least $\theta\left\|\nabla f\left(u_{k}\right)\right\|$.
Armijo's condition :

- Choose $\alpha_{0}>0$ and $0<\theta<1$,
- Choose the greatest $s \in \mathbb{Z}$ such that:

$$
f\left(u_{k}-\alpha_{0} 2^{s} \nabla f\left(u_{k}\right)\right) \leq f\left(u_{k}\right)-2^{s} \alpha_{0} \theta\left\|\nabla f\left(u_{k}\right)\right\|^{2} .
$$

- Set $u_{k+1} \leftarrow u_{k}-\alpha_{0} 2^{s} \nabla f\left(u_{k}\right)$.


## Gradient Descent : Armijo Criterium and Wolfe's Criteria

## Theorem

If the function $f$ is strictly convex and if its gradient $\nabla f$ is Lipschitz, then the Armijo's algorithm converge.

If we add the following condition to the previous one, given $0<\theta<\eta<1$ :

$$
\left\langle\nabla f\left(u_{k}\right), \nabla f\left(u_{k}-\rho \nabla f\left(u_{k}\right)\right)\right\rangle \geq \eta\left\|\nabla f\left(u_{k}\right)\right\|^{2}
$$

we get the Wolfe's Criteria

## Conjugate Gradient

## Definition

Let $A$ be a symmetric PD matrix and $u, v$ two vectors. $u, v$ are conjugate with respect to $A$ if

$$
\langle A u, v\rangle=0
$$

## Conjugate Gradient

## Definition

Let $A$ be a symmetric PD matrix and $u, v$ two vectors. $u, v$ are conjugate with respect to $A$ if

$$
\langle A u, v\rangle=0
$$

Let $A$ be a symmetric PD matrix and $f$ the function defined by

$$
f(v)=\frac{1}{2}\langle A v, v\rangle-\langle b, v\rangle .
$$

The objective is to build a series of conjugate descent direction

## Conjugate Gradient

- Let $u_{0} \in \mathbb{R}^{n}$, define a first direction of descent $d_{0}=\nabla f\left(u_{0}\right)$ and minimize $f$ along this direction :

$$
\underset{\alpha_{0}}{\arg \min } f\left(u_{0}-\alpha_{0} d_{0}\right)
$$

- Solving this problem we get :

$$
\alpha_{0}=\frac{\left\langle\nabla f\left(u_{0}\right), d_{0}\right\rangle}{\left\langle A d_{0}, d_{0}\right\rangle} .
$$

- We set $u_{1}=u_{0}-\alpha_{0} d_{0}$
- To build $d_{1}=\nabla f\left(u_{1}\right)+\beta_{0} d_{0}$, we need to find the value of $\beta_{0} \in \mathbb{R}$ such that

$$
\left\langle A d_{1}, d_{0}\right\rangle=0 .
$$

## Conjugate Gradient

- We then have to solve $\left\langle A \nabla f\left(u_{1}\right), d_{0}\right\rangle+\left\langle A \beta_{0} d_{0}, d_{0}\right\rangle=0$. The solution is given by

$$
\beta_{0}=-\frac{\left\langle A \nabla f\left(u_{1}\right), d_{0}\right\rangle}{\left\langle A d_{0}, d_{0}\right\rangle}
$$

Once it's done, you'll do as before.
You set $\alpha_{1}=\arg \min f\left(u_{1}-\alpha d_{1}\right)$.
Set $u_{2}=u_{1}-\alpha_{1} d_{1}$. And so on $\ldots$

## Conjugate Gradient : Summary

## Algorithm :

- Choose $u_{0} \in \mathbb{R}^{n}$ and $d_{0}=\nabla f\left(u_{0}\right)$.
- Set $\alpha_{0}=\frac{\left\langle\nabla f\left(u_{0}\right), d_{0}\right\rangle}{\left\langle A d_{0}, d_{0},\right\rangle}$ and $u_{1}=u_{0}-\alpha_{0} d_{0}$.
$-\beta_{0}=-\frac{\left\langle A \nabla f\left(u_{1}\right), d_{0}\right\rangle}{\left\langle A d_{0}, d_{0}\right\rangle}$.
For $k \geq 1$ do,
- Set $d_{k}=\nabla f\left(u_{k}\right)+\beta_{k-1} d_{k-1}$.
- Set $\alpha_{k}=\frac{\left\langle\nabla f\left(u_{k}\right), d_{k}\right\rangle}{\left\langle A d_{k}, d_{k},\right\rangle}$ and $u_{k+1}=u_{k}-\alpha_{k} d_{k}$.
- Set $\beta_{k}=\frac{\left\langle A \nabla f\left(u_{k+1}\right), d_{k}\right\rangle}{\left\langle A d_{k}, d_{k}\right\rangle}$

Untill $\left\|\nabla f\left(u_{k+1}\right)\right\| \leq \varepsilon$.

## Conjugate Gradient : Results

## Proposition

For all $1 \leq k \leq n$ such that $\nabla f\left(u_{0}\right), \ldots, \nabla f\left(u_{n}\right)$ are non equal to zero, we have the following relations for all $0 \leq l \leq k-1$ :

$$
\left\langle\nabla f\left(u_{k}\right), \nabla f\left(u_{l}\right)\right\rangle=0
$$

and

$$
\left\langle A d_{k}, d_{l}\right\rangle=0
$$

## Theorem

If $A$ is a symetric positive and definite matrix, then the conjugate gradient method converges with at most $n$ steps.

Try to prove the proposition by induction at home

## Newton's Method

The Newton's Method is a gradient descent algorithm that refines the direction of the descent as follows :

$$
u_{k+1} \leftarrow u_{k}-\left(\nabla^{2} f\left(u_{k}\right)\right)^{-1} \cdot \nabla f\left(u_{k}\right)
$$

$\checkmark$ Requires less iterations to converge
$\times$ Requires the inverse of the Hessian of the function we want to optimize $\left(\Theta\left(n^{3}\right)\right)$.
$\times$ The Hessian is not always invertible at a given point.

## Newton's Method

Let's come back to the logistic regression.
We want to find a model that predict the class of our data.


$\rightarrow$ An example of straight line that separate the two classes using logistic regression.

## Newton's Method

For Logistic Regression, we want to maximize $l(x, a)$ with a possible solution given by solving the equation :

$$
\nabla_{a} l(x, a)=\nabla_{a}\left(\sum_{i=1}^{n} y_{i} \log \left(p_{i}\right)+\left(1-y_{i}\right) \log \left(1-p_{i}\right)\right)=0,
$$

where $p=\left(1+\exp \left(-a^{T} x\right)\right)^{-1}$.

Explain why the log-likelihood is concave. Calculate the first and second derivatives of the function $l$.

## Newton's Method

If we apply the Newton's Method to the logistic regression we have

$$
\nabla_{a} l(x, a)=\sum_{i=1}^{n}\left(y_{i}-p_{i}\right) x_{i}, \quad \nabla_{a}^{2} l(x, a)=-\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) x_{i} x_{i}^{T}
$$

We can then write the algorithm :

- Choose $a_{0}$,
- Calculate $\nabla_{a} l(x, a)$ and $\left(\nabla_{a}^{2} l(x, a)\right)^{-1}$
- Set $a_{k+1} \leftarrow a_{k}-\left(\nabla_{a}^{2} l(x, a)\right)^{-1} \nabla_{a} l(x, a)$
- Stop when $\left\|\nabla_{a} l(x, a)\right\| \leq \varepsilon$.


## Quasi-Newton's Method: Motivation

Idea : avoid calculating the inverse of the Hessian matrix $H_{k}^{-1}$ as follows :

$$
\begin{aligned}
u_{k+1} & =u_{k}-M_{k} \nabla f\left(u_{k}\right), \\
M_{k+1} & =M_{k}+C_{k} .
\end{aligned}
$$

Approximate the $H_{k}^{-1}$ by matrix $M_{k}$ at which, we add a matrix of correction $C_{k}$ at each step

## Quasi-Newton's Method : Motivation

Recall that :
$\nabla f\left(u_{k}\right)=\nabla f\left(u_{k+1}+\left(u_{k}-u_{k+1}\right)\right) \sim \nabla f\left(u_{k+1}\right)+\nabla^{2} f\left(u_{k+1}\right)\left(u_{k}-u_{k+1}\right)$,
we then have :

$$
\left(\nabla^{2} f\left(u_{k+1}\right)\right)^{-1}\left(\nabla f\left(u_{k+1}\right)-\nabla f\left(u_{k}\right)\right) \sim u_{k+1}-u_{k}
$$

If we set :

$$
M_{k+1}=\left(\nabla^{2} f\left(u_{k+1}\right)\right)^{-1}, \gamma_{k}=\nabla f\left(u_{k+1}\right)-\nabla f\left(u_{k}\right)
$$

and $\delta_{k}=u_{k+1}-u_{k}$, we get the Quasi Newton's Condition:

$$
M_{k+1} \gamma_{k}=\delta_{k}
$$

## Quasi-Newton's Method: Davidon-Fletcher-Powell

- Assume $C_{k}$ is of rank 1, ie, $C_{k}$ as $v_{k} v_{k}^{T}$ where $v_{k} \in \mathbb{R}^{n}$.
- The update becomes :

$$
M_{k+1}=M_{k}+v_{k} v_{k}^{T}
$$

- The Quasi Newton's Condition gives :

$$
\begin{aligned}
\left(M_{k}+v_{k} v_{k}^{T}\right) \gamma_{k} & =\delta_{k} \\
M_{k} \gamma_{k}+v_{k} v_{k}^{T} \gamma_{k} & =\delta_{k} \\
v_{k} v_{k}^{T} \gamma_{k} & =\delta_{k}-M_{k} \gamma_{k} \\
v_{k} & =\frac{\delta_{k}-M_{k} \gamma_{k}}{v_{k}^{T} \gamma_{k}}
\end{aligned}
$$

And the second line gives us :

$$
v_{k}^{T} \gamma_{k}=\left(\gamma_{k} \delta_{k}-\gamma_{k} M_{k} \gamma_{k}\right)^{1 / 2} .
$$

## Quasi-Newton's Method : Broyden Algorithm

## Broyden Algorithm

## Algorithm

- Initialize $u_{0} \in \mathbb{R}^{n}$ and $M_{0}$ (usually $M_{0}=I d$ ),
- for $k \geq 0$ do
- set $\rho_{k}=\arg \min f\left(u_{k}-\rho M_{k} \nabla f\left(u_{k}\right)\right)$, $\rho \in \mathbb{R}$
- set $u_{k+1}=u_{k}-\rho_{k} M_{k} \nabla f\left(u_{k}\right)$,
$-\operatorname{set} M_{k+1}=M_{k}+\frac{\left(\delta_{k}-M_{k} \gamma_{k}\right)\left(\delta_{k}-M_{k} \gamma_{k}\right)^{T}}{\left(\delta_{k}-M_{k} \gamma_{k}\right)^{T} \gamma_{k}}$,
Untill $\left\|\nabla f\left(u_{k+1}\right)\right\| \leq \varepsilon$.


## Quasi-Newton's Method: Broyden-Fletcher-Goldfarb-Shanno

- Assume $C_{k}$ is of rank 1 , ie, $C_{k}$ as $v_{k} v_{k}^{T}$ where $v_{k} \in \mathbb{R}^{n}$.
- The inverse of the Hessian, at each step, is then approximated by :

$$
M_{k+1}=M_{k}+\left[1+\frac{\left\langle M_{k} \gamma_{k}, \gamma_{k}\right\rangle}{\left\langle\delta_{k}, \gamma_{k}\right\rangle}\right] \frac{\delta_{k} \delta_{k}^{T}}{\left\langle\delta_{k}, \gamma_{k}\right\rangle}-\frac{\left\langle\delta_{k}, \gamma_{k}\right\rangle M_{k}+M_{k} \gamma_{k} \delta_{k}^{T}}{\left\langle\delta_{k}, \gamma_{k}\right\rangle} .
$$

The algorithm is the same as the previous one.

## Conclusion

- Gradient descent with a constant learning rate :
$\checkmark$ Easy to implement
$\times$ Convergence depends on the value of the learning rate
- Gradient descent with an optimal step :
$\checkmark$ Faster then simple gradient descent
$\times$ More costly in terms of time
- Newton's Method :
$\checkmark$ Faster than the two others.
$\checkmark$ Requires less iterations.
$\times$ Requires to invert the Hessian matrix


## To go further

1. A more advanced Adam algorithm (used currently for DNNs)
2. Projected gradient descent seen later in the course
