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Algorithms

Setup

Given a function f and a non empty set U and knowing there is a
solution to the problem : f(u) = min

v∈U
f(v).

Idea : build a series (uk)k∈N which converges to u.

Algorithm :

• Take an initial value u0.
• uk → uk+1 : Choose a

direction dk and minimize
the function f along this
direction.

• Solve
arg min

ρ>0
f(uk − ρdk) = ρk

• uk+1 = uk − ρkdk
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Algorithms

Direction of descent

How to choose the direction dk ?

Some ways seem to be faster than others to reach the solution
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Algorithms

Direction of descent

1. Recall that

f(uk − ρdk) = f(uk)− ρ⟨∇f(uk), dk⟩+ ρε(ρ)

when ρ is close to 0
2. To minimize f we choose dk that maximizes ⟨∇f(uk), dk⟩
3. Due to Cauchy-Scwhartz Inequality, we have dk = ∇f(uk)

||f(uk)||
(assuming ∥dk∥ = 1)

4. Leads to the algorithm
• Choose u0 to initialize the algorithm,
• set uk+1 = uk − ρk∇f(uk) for ρk > 0
• till ∥∇f(uk)∥ ≤ ε.
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Algorithms

Summing up

1. There exists several ways to use the gradient
2. We focus on gradient descent algorithms and their variants.

▶ Gradient Descent, Line Search, Newton’s Method,...

Other algorithms that do not rely on the derivatives of the function.
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Algorithms

Gradient descent : choose the step 1/3
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Algorithms

Gradient descent : choose the step 2/3
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Algorithms

Gradient descent : choose the step 3/3

• If the step is too large, the sequence oscillates near the optimum.

• If the step is too small, the algorithm needs a large number of
iterations.

Can choose the step for the gradient descents method optimally !
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Algorithms

Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a
given direction.

• Choose u0 to initialize the algorithm,
• for k = 0, 1, . . . solve arg min

ρ>0
f(uk − ρ∇f(uk)),

• set uk+1 = uk − ρk∇f(uk)
• till ∥∇f(uk)∥ ≤ ε.

This algorithm is called the Gradient Descent with optimal step.
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Algorithms

Gradient descent : with optimal step

Definition
Let f be a convex and continuously differentiable function on Rn. We say
that f is strongly convex or α-elliptical if it exists α > 0 such that

⟨∇f(v)−∇f(u), v − u⟩ ≥ α∥v − u∥, ∀u, v ∈ Rn

What can we say about ⟨∇f(uk+1),∇f(uk)⟩ based on
ρk = arg min

ρ>0
f(uk − ρdk) ?
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Algorithms

Gradient descent : with optimal step

If ρk minimize f(uk − ρkdk) we have :

∂

∂ρ
f(uk − ρ∇f(uk))|ρ=ρk

= 0,

⇐⇒ ⟨∇f(uk − ρk∇f(uk),∇f(uk)⟩ = 0,

⇐⇒ ⟨∇f(uk+1),∇f(uk)⟩ = 0.

The last equality is called the optimality condition.

Proposition
If f is a strongly convex then GD with optimal step converges
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Algorithms

Gradient descent : with optimal step

Let A be a symmetric and PSD and b ∈ Rn. We want to optimize

f(v) = 1
2 ⟨Av, v⟩ − ⟨b, v⟩

• Calculate the gradient : ∇f(uk) = Auk − b

• We then have to solve : ρk = arg min
ρ>0

f(uk − ρdk). The optimality

condition gives us : ⟨∇f(uk),∇f(uk+1)⟩ = 0

∇f(uk+1) = Auk+1 − b

= A(uk − ρk(Auk − b)− b

= Auk − b− ρkA(Auk − b)
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Algorithms

Gradient descent : with optimal step

⇒ ⟨Auk − b, Auk − b− ρkA(Auk − b)⟩ = 0
⇒ ⟨Auk − b, Auk − b⟩ = ⟨Auk − b, ρkA(Auk − b)⟩

⇒ ρk = ⟨Auk − b, Auk − b⟩
⟨Auk − b, A(Auk − b)⟩

We finally have the following algorithm :
• Initialize u0 ∈ Rn

• At each step, calculate ρk = ∥Auk − b∥2

∥Auk − b∥2
A

• Set uk+1 = uk − ρk(Auk − b)
• Stop if ∥∇J(uk+1)∥ = ∥Auk+1 − b∥ ≤ ϵ
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Algorithms

Gradient descent : with optimal step

Exercise

Consider the matrices A =
(

6 2
2 4

)
and b =

(
2
3

)
and the application f

defined by f(v) = ⟨Av, v⟩+ ⟨b, v⟩
1. Explain why f in convex.
2. Solve the problem u = arg min

v∈R2
f(v).

3. For a given vector uk, calculate ∇fuk
and ρk.

4. Implement the presented method to solve this problem.
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Algorithms

Correction

• f is defined as a quadratic function where A is PSD, so f is convex.
• We have to solve :

Jf(x,y) =
(

12x + 4y + 2, 4x + 8y + 3
)

= (0, 0).

The solution is
(
− 1

20 ,− 7
20

)
.

• Let set uk = (v1, v2) then :

∇fuk
=
(

12v1 + 4v2 + 2, 4v1 + 8v2 + 3
)

,

and ρk = ∥2Auk + b∥2
2

∥2Auk + b∥2
A
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Algorithms

Exercise
Let f be the function defined by : f(x, y) = 4x2 − 4xy + 2y2.

1. Is the function f convex ?
2. Apply the gradient descent with optimal step to calculate the three

first steps of the algorithm using (x0, y0) = (1, 1).
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Algorithms

Correction 1/3

• The function f can be rewritten as : f(u) = 1
2uT Au− bT u, where

b = (0, 0)T and A =
(

8 −4
−4 4

)
. The function f is a quadratic

function, furthermore the matrix A is PSD so the function f is convex.
• The optimal learning rate is given by :

ρk
∥Auk − b∥2

2
∥Auk − b∥2

A

,

where the matrix A and the vector b were previously introduced.
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Algorithms

Correction 2/3

• The function f can be rewritten as : f(u) = 1
2uT Au− bT u, where

b = (0 0)T and A =
(

8 −4
−4 4

)
. The function f is a quadratic

function, furthermore the matrix A is PSD so the function f is convex.
• The optimal learning rate is given by :

ρk = ∥Auk − b∥2
2

∥Auk − b∥2
A

,

where the matrix A and the vector b were previously introduced.
Recall that the process is defined by :

uk+1 = uk − ρk∇f(uk).

We will now apply this process to compute the three first iterations.
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Algorithms

Correction 3/3

1. For the first iteration : ρ0 = ∥Au0∥2
2

∥Au0∥2
A

= 16
128 = 1

8 . And

∇f(u0) = Au0 = (4 0)T .

u1 = (1 1)T − 1
8(4 0)T = (0.5 1)T .

2. For the second iteration : ∇f(u1) = Au1 = (0 2)T . The learning

rate is given by : ρ1 = ∥Au1∥2
2

∥Au1∥2
A

= 4
16 = 1

4 . Thus u2 is given by :

u2 = (0.5 1)T − 1
4(0 2)T = (0.5 0.5)T .

3. For the third iteration : ∇f(u2) = Au2 = (2 0)T . The learning rate

is given by : ρ2 = ∥Au2∥2
2

∥Au2∥2
A

= 4
32 = 1

8 . Thus u3 is given by :

u3 = (0.5 0.5)T − 1
8(2 0)T = (0.25 0.5)T .
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Algorithms

Gradient Descent : Armijo Criterium

Idea : use a linear search to find the learning rate.
Given a θ ∈]0, 1[, choose the greatest ρ such that :

f(uk − ρ∇f(uk)) ≤ f(uk)− θρ∥∇f(uk)∥2.

At each step, we reduce the function’s value of at least θ∥∇f(uk)∥.

Armijo’s condition :
▶ Choose α0 > 0 and 0 < θ < 1,
▶ Choose the greatest s ∈ Z such that :

f(uk − α02s∇f(uk)) ≤ f(uk)− 2sα0θ∥∇f(uk)∥2.

▶ Set uk+1 ← uk − α02s∇f(uk).
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Algorithms

Gradient Descent : Armijo Criterium and Wolfe’s Criteria

Theorem
If the function f is strictly convex and if its gradient ∇f is Lipschitz,
then the Armijo’s algorithm converge.

If we add the following condition to the previous one, given
0 < θ < η < 1 :

⟨∇f(uk),∇f(uk − ρ∇f(uk))⟩ ≥ η∥∇f(uk)∥2,

we get the Wolfe’s Criteria
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Algorithms

Conjugate Gradient

Definition
Let A be a symmetric PD matrix and u, v two vectors. u, v are
conjugate with respect to A if

⟨Au, v⟩ = 0

Let A be a symmetric PD matrix and f the function defined by

f(v) = 1
2 ⟨Av, v⟩ − ⟨b, v⟩.

The objective is to build a series of conjugate descent direction
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Algorithms

Conjugate Gradient

• Let u0 ∈ Rn, define a first direction of descent d0 = ∇f(u0) and
minimize f along this direction :

arg min
α0

f(u0 − α0d0).

• Solving this problem we get :

α0 = ⟨∇f(u0), d0⟩
⟨Ad0, d0⟩

.

• We set u1 = u0 − α0d0
• To build d1 = ∇f(u1) + β0d0, we need to find the value of β0 ∈ R
such that

⟨Ad1, d0⟩ = 0.
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Algorithms

Conjugate Gradient

• We then have to solve ⟨A∇f(u1), d0⟩+ ⟨Aβ0d0, d0⟩ = 0. The solution
is given by

β0 = −⟨A∇f(u1), d0⟩
⟨Ad0, d0⟩

.

Once it’s done, you’ll do as before.

You set α1 = arg min
α

f(u1 − αd1).

Set u2 = u1 − α1d1. And so on ...
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Algorithms

Conjugate Gradient : Summary

Algorithm :
▶ Choose u0 ∈ Rn and d0 = ∇f(u0).

▶ Set α0 = ⟨∇f(u0), d0⟩
⟨Ad0, d0, ⟩

and u1 = u0 − α0d0.

▶ β0 = −⟨A∇f(u1), d0⟩
⟨Ad0, d0⟩

.

For k ≥ 1 do,
▶ Set dk = ∇f(uk) + βk−1dk−1.

▶ Set αk = ⟨∇f(uk), dk⟩
⟨Adk, dk, ⟩

and uk+1 = uk − αkdk.

▶ Set βk = ⟨A∇f(uk+1), dk⟩
⟨Adk, dk⟩

Untill ∥∇f(uk+1)∥ ≤ ε.
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Algorithms

Conjugate Gradient : Results

Proposition
For all 1 ≤ k ≤ n such that ∇f(u0), . . .,∇f(un) are non equal to zero,
we have the following relations for all 0 ≤ l ≤ k − 1 :

⟨∇f(uk),∇f(ul)⟩ = 0

and
⟨Adk, dl⟩ = 0.

Theorem
If A is a symetric positive and definite matrix, then the conjugate
gradient method converges with at most n steps.

Try to prove the proposition by induction at home
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Algorithms

Newton’s Method

The Newton’s Method is a gradient descent algorithm that refines the
direction of the descent as follows :

uk+1 ← uk −
(
∇2f(uk)

)−1 · ∇f(uk).

✓✓✓ Requires less iterations to converge
××× Requires the inverse of the Hessian of the function we want to

optimize (Θ(n3)).
××× The Hessian is not always invertible at a given point.
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Algorithms

Newton’s Method

Let’s come back to the logistic regression.
We want to find a model that predict the class of our data.

→ An example of straight line that separate the two classes using logistic
regression.
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Algorithms

Newton’s Method

For Logistic Regression, we want to maximize l(x, a) with a possible
solution given by solving the equation :

∇al(x, a) = ∇a

(
n∑

i=1
yi log(pi) + (1− yi) log(1− pi)

)
= 0,

where p =
(
1 + exp(−aT x)

)−1
.

Explain why the log-likelihood is concave. Calculate the first and
second derivatives of the function l.
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Algorithms

Newton’s Method

If we apply the Newton’s Method to the logistic regression we have

∇al(x, a) =
n∑

i=1
(yi − pi) xi, ∇2

al(x, a) = −
n∑

i=1
pi(1− pi)xix

T
i

We can then write the algorithm :
▶ Choose a0,
▶ Calculate ∇al(x, a) and

(
∇2

al(x, a)
)−1

▶ Set ak+1 ← ak −
(
∇2

al(x, a)
)−1∇al(x, a)

▶ Stop when ∥∇al(x, a)∥ ≤ ε.
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Algorithms

Quasi-Newton’s Method : Motivation

Idea : avoid calculating the inverse of the Hessian matrix H−1
k as

follows :

uk+1 = uk −Mk∇f(uk),
Mk+1 = Mk + Ck.

Approximate the H−1
k by matrix Mk at which, we add a matrix of
correction Ck at each step
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Algorithms

Quasi-Newton’s Method : Motivation

Recall that :

∇f(uk) = ∇f(uk+1+(uk−uk+1)) ∼ ∇f(uk+1)+∇2f(uk+1)(uk−uk+1),

we then have :(
∇2f(uk+1)

)−1 (∇f(uk+1)−∇f(uk)) ∼ uk+1 − uk.

If we set :

Mk+1 =
(
∇2f(uk+1)

)−1
, γk = ∇f(uk+1)−∇f(uk)

and δk = uk+1 − uk, we get the Quasi Newton’s Condition :

Mk+1γk = δk
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Algorithms

Quasi-Newton’s Method : Davidon-Fletcher-Powell
• Assume Ck is of rank 1, ie, Ck as vkvT

k where vk ∈ Rn.
• The update becomes :

Mk+1 = Mk + vkvT
k

.
• The Quasi Newton’s Condition gives :

(Mk + vkvT
k )γk = δk,

Mkγk + vkvT
k γk = δk,

vkvT
k γk = δk −Mkγk,

vk = δk −Mkγk

vT
k γk

.

And the second line gives us :

vT
k γk = (γkδk − γkMkγk)1/2

.
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Algorithms

Quasi-Newton’s Method : Broyden Algorithm

Broyden Algorithm
Algorithm
▶ Initialize u0 ∈ Rn and M0 (usually M0 = Id),
▶ for k ≥ 0 do

▶ set ρk = arg min
ρ∈R

f(uk − ρMk∇f(uk)),

▶ set uk+1 = uk − ρkMk∇f(uk),

▶ setMk+1 = Mk + (δk − Mkγk)(δk − Mkγk)T

(δk − Mkγk)T γk
,

Untill ∥∇f(uk+1)∥ ≤ ε.
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Algorithms

Quasi-Newton’s Method :
Broyden-Fletcher-Goldfarb-Shanno

• Assume Ck is of rank 1, ie, Ck as vkvT
k where vk ∈ Rn.

• The inverse of the Hessian, at each step, is then approximated by :

Mk+1 = Mk +
[
1 + ⟨Mkγk, γk⟩

⟨δk, γk⟩

]
δkδT

k

⟨δk, γk⟩
− ⟨δk, γk⟩Mk + MkγkδT

k

⟨δk, γk⟩
.

The algorithm is the same as the previous one.
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Algorithms

Conclusion

• Gradient descent with a constant learning rate :
✓✓✓ Easy to implement
××× Convergence depends on the value of the learning rate

• Gradient descent with an optimal step :
✓✓✓ Faster then simple gradient descent
××× More costly in terms of time

• Newton’s Method :
✓✓✓ Faster than the two others.
✓✓✓ Requires less iterations.
××× Requires to invert the Hessian matrix
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Algorithms

To go further

1. A more advanced Adam algorithm (used currently for DNNs)
2. Projected gradient descent seen later in the course
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