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Setup

Given a function f and a non empty set U/ and knowing there is a
solution to the problem : f(u) = mizr} f(v).
ve

Idea : build a series (ux)ren Which converges to u.
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Setup

Given a function f and a non empty set U/ and knowing there is a
solution to the problem : f(u) = mizr} f(v).
ve

Idea : build a series (ux)ren Which converges to u.

Algorithm :

= Take an initial value uy.

U = up — Ug41 : Choose a
direction dj and minimize

the function f along this
@ direction.

= Solve

argmin f(uy — pdi) = pr
p>0

" Uppl = Up — Prdy

d
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Direction of descent

How to choose the direction dj. ?

Some ways seem to be faster than others to reach the solution
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Direction of descent

1. Recall that

fur — pdi) = f(ur) — p(V f(ur), dx) + pe(p)

when p is close to 0
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Direction of descent

1. Recall that

fur — pdi) = f(ur) — p(V f(ur), dx) + pe(p)

when p is close to 0

2. To minimize f we choose dj, that maximizes (V f(ug), dx)
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Direction of descent

1. Recall that

fur — pdi) = f(ur) — p(V f(ur), dx) + pe(p)

when p is close to 0

2. To minimize f we choose dj, that maximizes (V f(ug), dx)
7

(uk)

3. Due to Cauchy-Scwhartz Inequality, we have dj = o

(assuming ||dk|| = 1)
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3. Due to Cauchy-Scwhartz Inequality, we have dj = o

(assuming ||dk|| = 1)
4. Leads to the algorithm
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fur — pdi) = f(ur) — p(V f(ur), dx) + pe(p)

when p is close to 0

2. To minimize f we choose dj, that maximizes (V f(ug), dx)
V f(uk

(uk)

3. Due to Cauchy-Scwhartz Inequality, we have dj = T o

(assuming ||dk|| = 1)
4. Leads to the algorithm

= Choose ug to initialize the algorithm,
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Direction of descent

1. Recall that

fur — pdi) = f(ur) — p(V f(ur), dx) + pe(p)

when p is close to 0

2. To minimize f we choose dj, that maximizes (V f(ug), dx)
V f(uk

(uk)

3. Due to Cauchy-Scwhartz Inequality, we have dj = T o

(assuming ||dk|| = 1)
4. Leads to the algorithm

= Choose ug to initialize the algorithm,
= set U1 = Up — ,oka(uk) for Pk > 0

Antoine Gourru OOR Course Master MLDM

5/38



Algorithms
00@0000

Direction of descent

1. Recall that

fur — pdi) = f(ur) — p(V f(ur), dx) + pe(p)

when p is close to 0

2. To minimize f we choose dj, that maximizes (V f(ug), dx)
V f(uk

(uk)

3. Due to Cauchy-Scwhartz Inequality, we have dj = T o

(assuming ||dk|| = 1)
4. Leads to the algorithm

= Choose ug to initialize the algorithm,
= set U1 = Up — ,oka(uk) for Pk > 0
w il ||V f(ur)] <e.

Antoine Gourru OOR Course Master MLDM

5/38



Algorithms
000@000

Summing up

1. There exists several ways to use the gradient
2. We focus on gradient descent algorithms and their variants.
» Gradient Descent, Line Search, Newton’s Method,...

Other algorithms that do not rely on the derivatives of the function.
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Gradient descent : choose the step 1/3
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Gradient descent : choose the step 2/3
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Gradient descent : choose the step 3/3

= If the step is too large, the sequence oscillates near the optimum.

= If the step is too small, the algorithm needs a large number of
iterations.

Can choose the step for the gradient descents method optimally !

Antoine Gourru OOR Course Master MLDM 9/38



Algorithms
@®00000000000000000

Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a
given direction.
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Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a
given direction.

= Choose ug to initialize the algorithm,
= for k=0,1,... solve argmin f(uy — pV f(ug)),
p>0

= set upt1 = uk — pp V£ (uk)
s till |[Vf(ug)] <e.
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Gradient descent : with optimal step

Idea : choose the step that minimizes the objective function along a
given direction.

= Choose ug to initialize the algorithm,
= for k=0,1,... solve argmin f(ug — pV [ (ug)),
p>0

= set upt1 = uk — pp V£ (uk)
s till |[Vf(ug)] <e.

This algorithm is called the Gradient Descent with optimal step.

Antoine Gourru OOR Course Master MLDM

10/38



Algorithms
O@0000000000000000

Gradient descent : with optimal step

Definition
Let f be a convex and continuously differentiable function on R™. We say
that f is strongly convex or a-elliptical if it exists « > 0 such that

(Vf(v) = Vf(u),v—u) >alv—ul, Yu,v € R"

What can we say about (V f(ur+1), Vf(ur)) based on

pr, = argmin f(uy — pdy)?
p>0
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Gradient descent : with optimal step
If p; minimize f(up — prdr) we have :
0
o flug = pV f(up))l =, =0,

= (Vf(ur — prVf(ur), Vf(ur)) =0,
= (Vf(upt1), Vf(ug)) = 0.

The last equality is called the optimality condition.

Proposition J

If f is a strongly convex then GD with optimal step converges
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Gradient descent : with optimal step

Let A be a symmetric and PSD and b € R™. We want to optimize

f(v) = 5 (Av,v) = (b,v)

DN | =

= Calculate the gradient : V f(ug) = Aug — b

= We then have to solve : p,, = argmin f(ug — pdy). The optimality
p>0

condition gives us : (V f(ug), Vf(ugt1)) =0

Vi(ug+1) = Augyr—b
= A(uk — pk(Auk — b) —-b
= Auk —b-— pkA(Auk — b)
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Gradient descent : with optimal step

= (Auk — b, Auk —b— pkA(Auk — b)> =0

= <Auk — b, Auk — b> = (Auk — b, pkA(Auk — b)>
<Auk - b, Auk - b>

(Auk — b, A(Auk — b)>

= Pk =

We finally have the following algorithm :

= |nitialize ug € R”
[ Ay — b
[ Auy —b]|%
= Set ugy1 = up — pr(Aug — b)
= Stop if [V (ups)l| = [[Augss — b]| < e

= At each step, calculate pi =
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Gradient descent : with optimal step

Consider the matrices A = (g Z) and b= (g) and the application f
v)

defined by f(v) = (Av,v) + (b,
1. Explain why f in convex.

2. Solve the problem u = argmin f(v).
vER?

3. For a given vector uy, calculate V f,,, and py.

N

. Implement the presented method to solve this problem.
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Correction

= f is defined as a quadratic function where A is PSD, so f is convex.

= We have to solve :

iy = (120 4+4y+2, 4z +8y+3 ) =(0,0).

The solution is ,i’,l .
200 20

= Let set up = (v1,v2) then :

Vfu, = ( 1201 +4vy +2, 4vy +8v2+3 ),

and _ H2Au;€ + b”%
Pk = 2 Auy, + b3
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Let f be the function defined by : f(x,y) = 422 — 4oy + 2y%.
1. Is the function f convex?

2. Apply the gradient descent with optimal step to calculate the three
first steps of the algorithm using (xo,y0) = (1, 1).
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Correction 1/3

= The function f can be rewritten as : f(u) = guTAu — bTu, where

b= (0,007 and A = §4 _44 . The function f is a quadratic

function, furthermore the matrix A is PSD so the function f is convex.

= The optimal learning rate is given by :

oAU = bl13
[ Ay, = Bl

where the matrix A and the vector b were previously introduced.
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Correction 2/3

1
= The function f can be rewritten as : f(u) = guTAu — bTu, where
8§ —4

4 4 ) The function f is a quadratic

b=(00)T and A=

function, furthermore the matrix A is PSD so the function f is convex.

= The optimal learning rate is given by :

o N — b
| Aus — 5]

where the matrix A and the vector b were previously introduced.
Recall that the process is defined by :

U1 = ug — prV f(ur).

We will now apply this process to compute the three first iterations.
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Correction 3/3

Augl|? 1 1
1. For the first iteration : py = || Auo |3 _ 6 = 2. And

[Auol% — 128~ 8’
Vf(UO) = AUO = (4 O)T

up = (11)7 - é(4 0)T = (0.51)7.

2. For the second iteration : Vf(ul) = Auj = (0 2)T. The learning

[Auw]3 4 1

rate is given by : p; = 6= Thus us is given by :

[Au% 16
1
= (0517 - 700 2)T =(0.50.5)7.
3. For the third iteration : Vf(u2) = Auz = (2 0)”. The learning rate

is given by : ps = | Aus —i 1 Thus us is given b

g Y - P2 [Aus)? 32 8 3158 Yy -
1

= (0.50.5)T — 3 0)" = (0.250.5)T.
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Gradient Descent : Armijo Criterium

Idea : use a linear search to find the learning rate.
Given a 0 €]0, 1], choose the greatest p such that :

Flur = pV f(ur)) < fur) = 0plIV f (wr)||*.

At each step, we reduce the function’s value of at least ||V f(uy)]|.
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Gradient Descent : Armijo Criterium

Idea : use a linear search to find the learning rate.
Given a 0 €]0, 1], choose the greatest p such that :

Flur = pV f(ur)) < fur) = 0plIV f (wr)||*.

At each step, we reduce the function’s value of at least ||V f(uy)]|.

Armijo’s condition :
» Choose ap >0and 0 < 0 < 1,
» Choose the greatest s € Z such that :

flug — ao2°V fug)) < flug) — 2°aof||V f (ue) ||

» Set upy1 + up — @25V f(uyg).
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Gradient Descent : Armijo Criterium and Wolfe's Criteria

If the function f is strictly convex and if its gradient V f is Lipschitz,
then the Armijo’s algorithm converge.

If we add the following condition to the previous one, given
0<f<n<l:

(Vf(ur), V f(ux = pV f(ur))) = 1llV f (ur)l|?,

we get the Wolfe's Criteria
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Conjugate Gradient

Let A be a symmetric PD matrix and u, v two vectors. u, v are
conjugate with respect to A if

(Au,v) =0
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Conjugate Gradient

Definition
Let A be a symmetric PD matrix and u, v two vectors. u, v are
conjugate with respect to A if

(Au,v) =0

Let A be a symmetric PD matrix and f the function defined by

F(0) = {Av,) — (b0,

The objective is to build a series of conjugate descent direction
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Conjugate Gradient

» Let up € R™, define a first direction of descent dy = V f(ug) and
minimize f along this direction :

argmin f(ug — agdp).-
ap

= Solving this problem we get :

_ (Vf(uo), do)
g = ———2 L,
(Ady, do)
= We set u; = ug — agdy
= To build dy = V f(u1) 4+ Bodo, we need to find the value of 5y € R

such that
<Ad17 d()> =0.
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Conjugate Gradient

= We then have to solve (AV f(u1),do) + (ABodo, do) = 0. The solution

is given b
SEvEn (AV £ (1), do)

Bo = =44, do)

Once it's done, you'll do as before.
You set a3 = argmin f(u; — ady).
«@

Set uo = u; — a1d;. And so on ...

Antoine Gourru OOR Course Master MLDM 25/38



Algorithms
000000000000 0000e0

Conjugate Gradient : Summary

Algorithm :
» Choose up € R™ and dy = V f(ug).

(V f(uo), do)

» Set ag = and uy = ug — agdp.

<Ad07d07>
(AV f(u1), do)
> fo=——F—".
Po (Ady, do)
For kK > 1 do,

» Set d = Vf(uk) 4+ Br_1di_1.
(Vf(ur), di)

» Set ay = (Ady, dg.) and ugy1 = up — apdy.
~ (AV f(upt1), di)
> Set i = (Ady, dy)

Untill ||V £ (ue1)] < e.
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Conjugate Gradient : Results

Proposition

For all 1 < k < n such that V f(up), ..., Vf(u,) are non equal to zero,
we have the following relations for all 0 <[ <k —1 :

(Vf(ug), Vf(w)) =0

and
(Ady, d;) = 0.

.

If A is a symetric positive and definite matrix, then the conjugate
gradient method converges with at most n steps.

A

Try to prove the proposition by induction at home
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Newton's Method

The Newton's Method is a gradient descent algorithm that refines the
direction of the descent as follows :

Uk+1 < Uk — (VQf(uk))il . Vf(uk)

v" Requires less iterations to converge

X Requires the inverse of the Hessian of the function we want to
optimize (©(n?)).

X The Hessian is not always invertible at a given point.
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Newton's Method

Let's come back to the logistic regression.
We want to find a model that predict the class of our data.

o
o 4
- @
o
o
°
© - o
o
o Og o
© o °
> o8 >
09
[
<+ 40 o ©
o
]
° @
o
(U | o
° °
o o
o o ©

— An example of straight line that separate the two classes using logistic
regression.
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Newton's Method

For Logistic Regression, we want to maximize [(x, a) with a possible
solution given by solving the equation :

Vil(z,a) =V, (Z yilog(pi) + (1 — yi) log(1 — pi)> =0,

where p = (1 + exp(—a’z))

Explain why the log-likelihood is concave. Calculate the first and
second derivatives of the function .
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Newton's Method

If we apply the Newton's Method to the logistic regression we have

n
=3 (yi —pi) i, Zm —pi)zir]

i=1
We can then write the algorithm :
» Choose ag,
» Calculate V,l(z,a) and (V2i(z,a))
» Set a1 < ag — (VZl(a:,a))_l Vil(z,a)
» Stop when ||V, i(z,a)| <e.

-1
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Quasi-Newton’'s Method : Motivation

Idea : avoid calculating the inverse of the Hessian matrix H, ' as
follows :

Uk+1 = uk—Mka(uk),
Mpyr = Mp+ Gy

Approximate the H];1 by matrix M}, at which, we add a matrix of
correction (Y at each step
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Quasi-Newton’'s Method : Motivation

Recall that :
Vf(ur) = Vf (g + (up—tns1)) ~ Vf (1) + V2 (urgr) (wr—upgr),
we then have :

(V2 f(urs) " (VF (urgr) = VI (up)) ~ wprr — up

If we set :

Mysr = (V2 f(urs1)) " v = Vi (urgr) — V()

and 0 = up+1 — ug, we get the Quasi Newton's Condition :

My 1 = 0y,

Antoine Gourru OOR Course Master MLDM 33/38



Algorithms
00000080000

Quasi-Newton's Method : Davidon-Fletcher-Powell

= Assume C}, is of rank 1, ie, C}, as vkvg where v, € R™.
= The update becomes :

T
M1 = My + vy,

= The Quasi Newton’s Condition gives :

(Mk + ”Ukvg)’)/k = O,
My, + vkvi vk = Ok,
VR e = Ok — My,
o = Ok — Mw/f.

T
U Yk

And the second line gives us :

v vk = (k0K — %MMk)l/Q-
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Quasi-Newton’'s Method : Broyden Algorithm

Broyden Algorithm

Algorithm
» Initialize ug € R™ and My (usually My = Id),
» for k> 0 do

» set pr = argmin f(ur — pMrV f(ug)),
PER
» set ugp41 = up — pkMka(uk),

> SethJrl = My +
Untill |V f(ugs1)] <e.

(0k — Myye) Tk

(8% — Miyie) (6 — Migyie)™
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Quasi-Newton's Method :
Broyden-Fletcher-Goldfarb-Shanno

= Assume C}, is of rank 1, ie, C} as vkv,{ where v, € R™.
= The inverse of the Hessian, at each step, is then approximated by :

My+1 = My + {1 +

Ok Vi) Oy k) (0> Vi)

The algorithm is the same as the previous one.
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Conclusion

= Gradient descent with a constant learning rate :

v/ Easy to implement
X Convergence depends on the value of the learning rate

= Gradient descent with an optimal step :
v Faster then simple gradient descent
X More costly in terms of time

= Newton’s Method :
v Faster than the two others.

V" Requires less iterations.
X Requires to invert the Hessian matrix
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To go further

1. A more advanced Adam algorithm (used currently for DNNs)

2. Projected gradient descent seen later in the course
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