Optimization & Operational Research : Second Part

Antoine Gourru

Slides built by Guillaume Metzler, updated by levgen Redko and Anna Karolin

January 2024 - Semester II

Setup

Given a function f and a non empty set \mathcal{U} and knowing there is a solution to the problem : $f(u) = \min_{v \in \mathcal{U}} f(v)$. Idea : build a series $(u_k)_{k \in \mathbb{N}}$ which converges to u.

Setup

Given a function f and a non empty set \mathcal{U} and knowing there is a solution to the problem : $f(u) = \min_{v \in \mathcal{U}} f(v)$.

Idea : build a series $(u_k)_{k \in \mathbb{N}}$ which converges to u.

Algorithm :

- Take an initial value u_0 .
- u_k → u_{k+1}: Choose a direction d_k and minimize the function f along this direction.
 - Solve $\underset{\rho>0}{\operatorname{arg\,min}} f(u_k - \rho d_k) = \rho_k$

$$u_{k+1} = u_k - \rho_k d_k$$

Some ways seem to be $\ensuremath{\textit{faster}}$ than others to reach the solution

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle
 abla f(u_k), d_k
 angle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k
 ho_k
 abla f(u_k)$ for $ho_k > 0$
 - till $\|\nabla f(u_k)\| \leq \varepsilon$.

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k
 ho_k
 abla f(u_k)$ for $ho_k > 0$
 - till $\|\nabla f(u_k)\| \leq \varepsilon$.

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k
 ho_k
 abla f(u_k)$ for $ho_k > 0$
 - till $\|\nabla f(u_k)\| \leq \varepsilon$.

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| \leq \varepsilon$.

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| \leq \varepsilon$.

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|
 abla f(u_k)\| \leq arepsilon$

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \frac{\nabla f(u_k)}{||f(u_k)||}$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm,
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| \leq \varepsilon$.

Summing up

- 1. There exists several ways to use the gradient
- 2. We focus on gradient descent algorithms and their variants.
 - ► Gradient Descent, Line Search, Newton's Method,...

Other algorithms that **do not rely on** the derivatives of the function.

Gradient descent : choose the step 1/3

Gradient descent : choose the step 2/3

Gradient descent : choose the step 3/3

- If the step is too large, the sequence oscillates near the optimum.
- If the step is too small, the algorithm needs a large number of iterations.

Can choose the step for the gradient descents method optimally !

 $\ensuremath{\textbf{ldea}}$: choose the step that minimizes the objective function along a given direction.

 $\ensuremath{\textbf{ldea}}$: choose the step that minimizes the objective function along a given direction.

- Choose u_0 to initialize the algorithm,
- for $k = 0, 1, \ldots$ solve $\underset{\rho > 0}{\operatorname{arg\,min}} f(u_k \rho \nabla f(u_k)),$
- set $u_{k+1} = u_k \rho_k \nabla f(u_k)$
- till $\|\nabla f(u_k)\| \leq \varepsilon$.

 $\ensuremath{\textbf{ldea}}$: choose the step that minimizes the objective function along a given direction.

- Choose u_0 to initialize the algorithm,
- for $k = 0, 1, \ldots$ solve $\underset{\rho > 0}{\operatorname{arg\,min}} f(u_k \rho \nabla f(u_k)),$
- set $u_{k+1} = u_k \rho_k \nabla f(u_k)$
- till $\|\nabla f(u_k)\| \leq \varepsilon$.

This algorithm is called the Gradient Descent with optimal step.

Definition

Let f be a convex and continuously differentiable function on \mathbb{R}^n . We say that f is strongly convex or α -elliptical if it exists $\alpha > 0$ such that

$$\langle \nabla f(v) - \nabla f(u), v - u \rangle \ge \alpha \|v - u\|, \ \forall u, v \in \mathbb{R}^n$$

What can we say about
$$\langle \nabla f(u_{k+1}), \nabla f(u_k) \rangle$$
 based on $\rho_k = \operatorname*{arg\,min}_{\rho>0} f(u_k - \rho d_k)$?

If ρ_k minimize $f(u_k - \rho_k d_k)$ we have :

$$\frac{\partial}{\partial \rho} f(u_k - \rho \nabla f(u_k))|_{\rho = \rho_k} = 0,$$

$$\iff \langle \nabla f(u_k - \rho_k \nabla f(u_k), \nabla f(u_k) \rangle = 0,$$

$$\iff \langle \nabla f(u_{k+1}), \nabla f(u_k) \rangle = 0.$$

The last equality is called the optimality condition.

Proposition

If f is a **strongly convex** then GD with optimal step converges

Let A be a symmetric and PSD and $b \in \mathbb{R}^n$. We want to optimize

$$f(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle$$

- Calculate the gradient : $\nabla f(u_k) = Au_k b$
- We then have to solve : $\rho_k = \underset{\rho>0}{\operatorname{arg\,min}} f(u_k \rho d_k)$. The optimality condition gives us : $\langle \nabla f(u_k), \nabla f(u_{k+1}) \rangle = 0$

$$\nabla f(u_{k+1}) = Au_{k+1} - b$$

= $A(u_k - \rho_k(Au_k - b) - b)$
= $Au_k - b - \rho_k A(Au_k - b)$

$$\Rightarrow \langle Au_k - b, Au_k - b - \rho_k A(Au_k - b) \rangle = 0 \Rightarrow \langle Au_k - b, Au_k - b \rangle = \langle Au_k - b, \rho_k A(Au_k - b) \rangle \Rightarrow \rho_k = \frac{\langle Au_k - b, Au_k - b \rangle}{\langle Au_k - b, A(Au_k - b) \rangle}$$

We finally have the following algorithm :

- Initialize $u_0 \in \mathbb{R}^n$
- At each step, calculate $ho_k = rac{\|Au_k b\|^2}{\|Au_k b\|_{_A}^2}$

• Set
$$u_{k+1} = u_k - \rho_k (Au_k - b)$$

• Stop if
$$\|\nabla J(u_{k+1})\| = \|Au_{k+1} - b\| \le \epsilon$$

Exercise

Consider the matrices
$$A = \begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix}$$
 and $b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and the application f defined by $f(v) = \langle Av, v \rangle + \langle b, v \rangle$

- 1. Explain why f in convex.
- 2. Solve the problem $u = \underset{v \in \mathbb{R}^2}{\operatorname{arg\,min}} f(v)$.
- 3. For a given vector u_k , calculate ∇f_{u_k} and ρ_k .
- 4. Implement the presented method to solve this problem.

Correction

- f is defined as a quadratic function where A is PSD, so f is convex.
- We have to solve :

$$\begin{split} J_{f(x,y)} &= \left(\begin{array}{cc} 12x + 4y + 2, & 4x + 8y + 3 \end{array} \right) = (0,0). \end{split}$$
 The solution is $\left(-\frac{1}{20}, -\frac{7}{20} \right).$
• Let set $u_k = (v_1, v_2)$ then :

$$\nabla f_{u_k} = \left(\begin{array}{cc} 12v_1 + 4v_2 + 2, & 4v_1 + 8v_2 + 3 \end{array}\right),$$
 and $\rho_k = \frac{\|2Au_k + b\|_2^2}{\|2Au_k + b\|_A^2}$

Exercise

Let f be the function defined by : $f(x,y) = 4x^2 - 4xy + 2y^2$.

- 1. Is the function f convex?
- 2. Apply the gradient descent with optimal step to calculate the three first steps of the algorithm using $(x_0, y_0) = (1, 1)$.

Correction 1/3

- The function f can be rewritten as : $f(u) = \frac{1}{2}u^T A u b^T u$, where $b = (0,0)^T$ and $A = \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix}$. The function f is a quadratic function, furthermore the matrix A is PSD so the function f is convex.
- The optimal learning rate is given by :

$$\rho_k \frac{\|Au_k - b\|_2^2}{\|Au_k - b\|_A^2},$$

where the matrix A and the vector b were previously introduced.

Correction 2/3

- The function f can be rewritten as : $f(u) = \frac{1}{2}u^TAu - b^Tu$, where

$$b = (0 \ 0)^T$$
 and $A = \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix}$. The function f is a quadratic

function, furthermore the matrix A is PSD so the function f is convex.

• The optimal learning rate is given by :

$$\rho_k = \frac{\|Au_k - b\|_2^2}{\|Au_k - b\|_A^2},$$

where the matrix ${\cal A}$ and the vector b were previously introduced. Recall that the process is defined by :

$$u_{k+1} = u_k - \rho_k \nabla f(u_k).$$

We will now apply this process to compute the three first iterations.

Correction 3/3

- 1. For the first iteration : $\rho_0 = \frac{\|Au_0\|_2^2}{\|Au_0\|_A^2} = \frac{16}{128} = \frac{1}{8}$. And $\nabla f(u_0) = Au_0 = (4\ 0)^T$. $u_1 = (1\ 1)^T - \frac{1}{8}(4\ 0)^T = (0.5\ 1)^T$.
- 2. For the second iteration : $\nabla f(u_1) = Au_1 = (0 \ 2)^T$. The learning rate is given by : $\rho_1 = \frac{\|Au_1\|_2^2}{\|Au_1\|_A^2} = \frac{4}{16} = \frac{1}{4}$. Thus u_2 is given by :

$$u_2 = (0.5 \ 1)^T - \frac{1}{4} (0 \ 2)^T = (0.5 \ 0.5)^T.$$

3. For the third iteration : $\nabla f(u_2) = Au_2 = (2\ 0)^T$. The learning rate is given by : $\rho_2 = \frac{\|Au_2\|_2^2}{\|Au_2\|_A^2} = \frac{4}{32} = \frac{1}{8}$. Thus u_3 is given by : $u_3 = (0.5\ 0.5)^T - \frac{1}{8}(2\ 0)^T = (0.25\ 0.5)^T$.

Gradient Descent : Armijo Criterium

Idea : use a linear search to find the **learning rate**. Given a $\theta \in]0, 1[$, choose the greatest ρ such that :

$$f(u_k - \rho \nabla f(u_k)) \le f(u_k) - \theta \rho \|\nabla f(u_k)\|^2.$$

At each step, we reduce the function's value of at least $\theta \|\nabla f(u_k)\|$.

Gradient Descent : Armijo Criterium

Idea : use a linear search to find the **learning rate**. Given a $\theta \in]0, 1[$, choose the greatest ρ such that :

$$f(u_k - \rho \nabla f(u_k)) \le f(u_k) - \theta \rho \|\nabla f(u_k)\|^2.$$

At each step, we reduce the function's value of at least $\theta \|\nabla f(u_k)\|$.

Armijo's condition :

- ► Choose $\alpha_0 > 0$ and $0 < \theta < 1$,
- Choose the greatest $s \in \mathbb{Z}$ such that :

$$f(u_k - \alpha_0 2^s \nabla f(u_k)) \le f(u_k) - 2^s \alpha_0 \theta \|\nabla f(u_k)\|^2.$$

► Set $u_{k+1} \leftarrow u_k - \alpha_0 2^s \nabla f(u_k)$.

Gradient Descent : Armijo Criterium and Wolfe's Criteria

Theorem

If the function f is **strictly convex** and if its gradient ∇f is **Lipschitz**, then the Armijo's algorithm **converge**.

If we add the following condition to the previous one, given $0 < \theta < \eta < 1$:

$$\langle \nabla f(u_k), \nabla f(u_k - \rho \nabla f(u_k)) \rangle \ge \eta \| \nabla f(u_k) \|^2,$$

we get the Wolfe's Criteria

Definition

Let A be a symmetric PD matrix and u, v two vectors. u, v are conjugate with respect to A if

$$\langle Au, v \rangle = 0$$

Definition

Let A be a symmetric PD matrix and u, v two vectors. u, v are conjugate with respect to A if

 $\langle Au,v\rangle=0$

Let A be a symmetric \mbox{PD} matrix and f the function defined by

$$f(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle.$$

The objective is to build a series of conjugate descent direction

• Let $u_0 \in \mathbb{R}^n$, define a first direction of descent $d_0 = \nabla f(u_0)$ and minimize f along this direction :

$$\underset{\alpha_0}{\operatorname{arg\,min}} f(u_0 - \alpha_0 d_0).$$

Solving this problem we get :

$$\alpha_0 = \frac{\langle \nabla f(u_0), d_0 \rangle}{\langle A d_0, d_0 \rangle}.$$

• We set $u_1 = u_0 - \alpha_0 d_0$

- To build $d_1 = \nabla f(u_1) + \beta_0 d_0,$ we need to find the value of $\beta_0 \in \mathbb{R}$ such that

$$\langle Ad_1, d_0 \rangle = 0.$$

• We then have to solve $\langle A \nabla f(u_1), d_0 \rangle + \langle A \beta_0 d_0, d_0 \rangle = 0$. The solution is given by

$$\beta_0 = -\frac{\langle A\nabla f(u_1), d_0 \rangle}{\langle Ad_0, d_0 \rangle}$$

Once it's done, you'll do as before.

You set
$$\alpha_1 = \underset{\alpha}{\operatorname{arg\,min}} f(u_1 - \alpha d_1).$$

Set $u_2 = u_1 - \alpha_1 d_1$. And so on ...

Conjugate Gradient : Summary

Algorithm :

► Choose
$$u_0 \in \mathbb{R}^n$$
 and $d_0 = \nabla f(u_0)$.
► Set $\alpha_0 = \frac{\langle \nabla f(u_0), d_0 \rangle}{\langle Ad_0, d_0, \rangle}$ and $u_1 = u_0 - \alpha_0 d_0$.
► $\beta_0 = -\frac{\langle A \nabla f(u_1), d_0 \rangle}{\langle Ad_0, d_0 \rangle}$.
For $k \ge 1$ do,
► Set $d_k = \nabla f(u_k) + \beta_{k-1} d_{k-1}$.
► Set $\alpha_k = \frac{\langle \nabla f(u_k), d_k \rangle}{\langle Ad_k, d_k, \rangle}$ and $u_{k+1} = u_k - \alpha_k d_k$.
► Set $\beta_k = \frac{\langle A \nabla f(u_{k+1}), d_k \rangle}{\langle Ad_k, d_k \rangle}$
Untill $\| \nabla f(u_{k+1}) \| \le \varepsilon$.

Conjugate Gradient : Results

Proposition

For all $1 \le k \le n$ such that $\nabla f(u_0), \ldots, \nabla f(u_n)$ are non equal to zero, we have the following relations for all $0 \le l \le k-1$:

 $\langle \nabla f(u_k), \nabla f(u_l) \rangle = 0$

and

$$\langle Ad_k, d_l \rangle = 0.$$

Theorem

If A is a symetric positive and definite matrix, then the conjugate gradient method converges with **at most** n **steps**.

Try to prove the proposition by induction at home

Antoine Gourru

OOR Course Master MLDM

The Newton's Method is a gradient descent algorithm that refines the direction of the descent as follows :

$$u_{k+1} \leftarrow u_k - \left(\nabla^2 f(u_k)\right)^{-1} \cdot \nabla f(u_k).$$

- Requires less iterations to converge
- × Requires the inverse of the Hessian of the function we want to optimize $(\Theta(n^3))$.
- × The Hessian is not always invertible at a given point.

Let's come back to the logistic regression.

We want to find a model that predict the class of our data.

 \rightarrow An example of straight line that separate the two classes using logistic regression.

For Logistic Regression, we want to maximize l(x, a) with a **possible** solution given by solving the equation :

$$\nabla_a l(x,a) = \nabla_a \left(\sum_{i=1}^n y_i \log(p_i) + (1-y_i) \log(1-p_i) \right) = 0,$$
 where $p = \left(1 + \exp(-a^T x) \right)^{-1}$.

Explain why the log-likelihood is **concave**. Calculate the **first and second derivatives** of the function l.

If we apply the Newton's Method to the logistic regression we have

$$\nabla_a l(x,a) = \sum_{i=1}^n (y_i - p_i) x_i, \quad \nabla_a^2 l(x,a) = -\sum_{i=1}^n p_i (1 - p_i) x_i x_i^T$$

We can then write the algorithm :

- ▶ Choose a_0 ,
- Calculate $\nabla_a l(x,a)$ and $\left(\nabla_a^2 l(x,a)\right)^{-1}$
- Set $a_{k+1} \leftarrow a_k \left(\nabla_a^2 l(x,a)\right)^{-1} \nabla_a l(x,a)$

• Stop when
$$\|\nabla_a l(x, a)\| \leq \varepsilon$$
.

Quasi-Newton's Method : Motivation

 \mathbf{Idea} : avoid calculating the inverse of the Hessian matrix H_k^{-1} as follows :

$$u_{k+1} = u_k - M_k \nabla f(u_k),$$

$$M_{k+1} = M_k + C_k.$$

Approximate the H_k^{-1} by matrix M_k at which, we add a matrix of correction C_k at each step

Quasi-Newton's Method : Motivation

Recall that :

$$\nabla f(u_k) = \nabla f(u_{k+1} + (u_k - u_{k+1})) \sim \nabla f(u_{k+1}) + \nabla^2 f(u_{k+1})(u_k - u_{k+1}),$$

we then have :

$$\left(\nabla^2 f(u_{k+1})\right)^{-1} \left(\nabla f(u_{k+1}) - \nabla f(u_k)\right) \sim u_{k+1} - u_k.$$

If we set :

$$M_{k+1} = \left(\nabla^2 f(u_{k+1})\right)^{-1}, \ \gamma_k = \nabla f(u_{k+1}) - \nabla f(u_k)$$

and $\delta_k = u_{k+1} - u_k$, we get the Quasi Newton's Condition :

$$M_{k+1}\gamma_k = \delta_k$$

Quasi-Newton's Method : Davidon-Fletcher-Powell

- Assume C_k is of rank 1, ie, C_k as $v_k v_k^T$ where $v_k \in \mathbb{R}^n$.
- The update becomes :

$$M_{k+1} = M_k + v_k v_k^T$$

• The Quasi Newton's Condition gives :

$$\begin{array}{rcl} (M_k + v_k v_k^T) \gamma_k &=& \delta_k, \\ M_k \gamma_k + v_k v_k^T \gamma_k &=& \delta_k, \\ & v_k v_k^T \gamma_k &=& \delta_k - M_k \gamma_k, \\ & v_k &=& \frac{\delta_k - M_k \gamma_k}{v_k^T \gamma_k}. \end{array}$$

And the second line gives us :

$$v_k^T \gamma_k = \left(\gamma_k \delta_k - \gamma_k M_k \gamma_k\right)^{1/2}.$$

Quasi-Newton's Method : Broyden Algorithm

Broyden Algorithm

Algorithm

▶ Initialize $u_0 \in \mathbb{R}^n$ and M_0 (usually $M_0 = Id$),

For k ≥ 0 do
For k ≥ 0 do
set
$$\rho_k = \underset{\rho \in \mathbb{R}}{\arg\min} f(u_k - \rho M_k \nabla f(u_k)),$$
For $u_{k+1} = u_k - \rho_k M_k \nabla f(u_k),$
For $M_{k+1} = M_k + \frac{(\delta_k - M_k \gamma_k)(\delta_k - M_k \gamma_k)^T}{(\delta_k - M_k \gamma_k)^T \gamma_k}$
Untill $\|\nabla f(u_{k+1})\| \le \varepsilon.$

Quasi-Newton's Method : Broyden-Fletcher-Goldfarb-Shanno

- Assume C_k is of rank 1, ie, C_k as $v_k v_k^T$ where $v_k \in \mathbb{R}^n$.
- The inverse of the Hessian, at each step, is then approximated by :

$$M_{k+1} = M_k + \left[1 + \frac{\langle M_k \gamma_k, \gamma_k \rangle}{\langle \delta_k, \gamma_k \rangle}\right] \frac{\delta_k \delta_k^T}{\langle \delta_k, \gamma_k \rangle} - \frac{\langle \delta_k, \gamma_k \rangle M_k + M_k \gamma_k \delta_k^T}{\langle \delta_k, \gamma_k \rangle}$$

The algorithm is the same as the previous one.

Conclusion

• Gradient descent with a constant learning rate :

- ✓ Easy to implement
- $\boldsymbol{\mathsf{x}}$. Convergence depends on the value of the learning rate

• Gradient descent with an optimal step :

- ✓ Faster then simple gradient descent
- × More costly in terms of time

• Newton's Method :

- ✓ Faster than the two others.
- Requires less iterations.
- × Requires to invert the Hessian matrix

- 1. A more advanced Adam algorithm (used currently for DNNs)
- 2. Projected gradient descent seen later in the course